

SWEA

Struvite Recovery Lessons Learned

Ohio Wastewater Conference June 2019 Columbus, OH David Wrightsman, P.E., CEM

Chris Martin, Frederick Winchester Service Authority Aidan Murphy, ESG Navit Johal, Ostara

energysystemsgroup.com

©2018 Energy Systems Group, LLC | 1

Frederick Winchester Service Authority Plant Overview

- 2010 \$50M upgrade to ENR to meet Chesapeake Bay requirements
- 12.6 MGD design, 8.0 MGD average, 16.0 MGD peak
- Permitted for monthly averages of 7.1 mg/I BOD; 10 mg/I TSS, 3.0 mg/I Ammonia, 0.197 mg/I total phosphorus annual average

Design Loads

Parameter	Influent (mg/l / lbs/d)
TSS	158 / 16,603
CBOD	169 / 17,759
TKN	25.7 / 2,704
Ammonia	14 / 1,473
Total P	4.6 / 484

Frederick-Winchester Service Authority

Needs

- Lime stabilized sludge
- Frame Press dewatering
- Centrifugal blowers, oversized
- No DO control on aeration
- HVAC issues in main building
- Escalating costs for chemicals & electricity

Why was struvite recovery process added to this project?

- 1. Struvite formation may occur with a biological phosphorus removal is combined with anaerobic digestion
- 2. As this project included an extensive hauled waste program, they wanted to have wide range of feedstocks to select in order to maximize new revenue
- 3. Phosphorus recycle loads from dewatering increase ferric oxide consumption to meet effluent limits

Envirotec Magazine

Basis of Design

Parameter	Value	Unit
Design Flow	718	gpm
Ortho-phosphorus	390	Pounds per day
Ammonia	495	Pounds per day
Phosphorus removal efficiency	90	%
Nitrogen Removal	38	%

Process Flow Diagram

Feb 10, 2017 – Substantial Completion

Bagging and pellet storage

Annual Cost Optimization

Ran scenarios for different loading rates to optimize chemical feed design

- Assuming different Phosphorus loads from startup to 20 year design life
- 0 to 100% centrate capture on Belt filter press
- 0 to 100% centrate capture on Gravity belt thickener
- Use magnesium chloride versus magnesium hydroxide
- With or without cost of power (due to CHP)

Annual Cost of Operations					
Results	Average Conditions	Worst Conditions - minimum struvite	Best Conditions – max struvite + zero cost of power		
Base Case	(\$57,142)	(\$84,517)	\$17,710		
Base Case + No MgOH	(\$93,496)	(\$120,871)	(\$18,643)		

Chemicals

Changes

- MgCL2 pump was inconsistent due to bad check valve
- Pellet production is better for smaller size
- Ensuring accurate lab data on the feed characteristics (PO4-P and Mg in the BFP filtrate and GBT filtrate).

Lessons Learned

- More technology options available today
- Require <u>active</u> management
- Weekly calls
- Operator buy-in
- Keep current data in control system for optimum chemical dose
- Still below design loads

Also see: "Operating Experience with Ostara Struvite Harvesting Process", Authors: Steve Reusser, Alan Grooms, Aaron Dose, Ahren Britton, Ram Prasad

Thank You

David Wrightsman, P.E., CEM Energy Systems Group <u>dwrightsman@esg.email</u> 317.502.4663

energysystemsgroup.com