Dayton Parallel Interceptor Innovative Construction Methods

Redundancy for Critical Service Using Custom Pipe Technology

Interceptor Sewer

Within The Levees

Permitting & Coordination

Full Redundancy

Provide full redundancy to the City's most critical sewer infrastructure

Isolation

Allow for full isolation of both the existing and proposed interceptors

Facilitate Future Rehab

Facilitate future rehabilitation and repair of the existing interceptor without bypass pumping

Project Goals

Buy In Bulk

Constructing 2 miles of 4 total miles

Dayton's Cost

\$17.9 Million

(3 Bids within 4% of each other)

Per Mile Cost

\$9 to \$12 Million per Mile

Project Costs

Evaluated multiple concepts to arrive on the chevron shaped concrete box

. Anti-floatation "wings" Shallow depth of cover H-20 Loading Size Changes to go under storm crossings Sloped bottom to prevent sedimentation Match existing interceptor inverts 00000 0000 00000 0000 00 0 0 00 0 SHALLOW

Shape and Material

- Corrosion in existing sewer
- Increased corrosion where Siphons Connect
- ConBloc Anti-Microbial Admixture (ASTM C494 Type S and ASTM C1577)
- Apply acid-resistant lining in junction chambers

Corrosion Protection

ARCADIS

Under Pressure

oWorks C _ 🗆 🗙 le <u>E</u>dit _ 8 × a 😂 🗄 🚯 🔍 👫 🔢 🧢 🖉 (II) 741.0-Point B 739.0-100-Year Flood 737.0-735.0-733.0-731.0-729.0-Point A 727.0-725.0-723.0-721.0-719.0-717.0-715.0-713.0-711.0-709.0--13 4-10 707.0-8 12071 12992 13993 14657 15575 16125 16960 17882 19254 20203 20924 21862 22324 nk (1.1)B-8.1 96.0 B-6.1 B-4.1 A-12.1 96.0 A-11.1 B-7.1 B-2. A-7.1 idth (in) 96.0 120.0 96.0 eight (in) 0.0 ode 72.0 72.0 B-8 B-7 B-6 B-5 B-4 - B-2 B-1 - A-13 A-12 A-11 A-10 - A-6 -Т - Press F1 Zoom (ft): 1733.00 [1:2852] READ CAP NUM SCRL

	Point A	Point B
100-Year Flood Elevation	734.0	736.5
Peak Internal Surcharge Elevation	721.0	732.5
Differential	13 FT / 5.6 PSI	4 FT / 1.7 PSI
Approximate Invert Elevation	706.0	715.4
Internal Surcharge Pressure (No Flood)	15 FT / 6.5 PSI	17.1 FT / 7.4 PSI

Typical cross-section of tongue and groove joint with flexible mastic sealant

Typical cross-section of opposing shoulder type bell and spigot joint with a confined o-ring rubber gasket

- Our team developed a specification which references ASTM C1677, but requires 13 PSI modifications.
- How can this be done?

Joint Design

Gasketed Joints

- BOX CULVERT JOINT DETAIL
- Gaskets factory applied and tested
- Mastic field applied

Joint Testing

- Testing performed at the precast factory
- Tests performed using a custom test gasket

Delivery and Unloading

Trench Excavation

Install of Piling adjacent to box culvert 1.mp4

Dewatering

Placement of Boxes

Video pulling the cofferdam.mp4

Cincinnati Street Junction Chamber

Cincinnati Street Junction Chamber

Cincinnati Street Junction Chamber

Cincinnati Street Junction Chamber

Utility Crossing – Water Main Lowering

Flooding

ARCADIS

Started installation in March of 2018

Current Progress

4000 of 9200 feet installed as of May 2019

Scheduled completion Oct 2020

larry.kremer@daytonohio.gov

Thank

dmartin@raconsultantsllc.com

