Pelletization of Thermal Dried Sludge to Improve Usability and Marketability of Biofertilizer

Meg Hollowed, Process Engineer
Damon Forney
Sudhakar Viswanathan
Wes Yellin
Meet the Team

Wes Yellin

Damon Forney

Sudhakar Viswanathan
Western Wake Regional Water Reclamation Facility
Wake County Water Reclamation

- 860 sq. miles (549,000 acres)
- Raleigh and 11 other cities
- County growing by ~86 people per day
- Raleigh and Cary were 9th & 10th fastest growing cities in the US in 2012
- Just over 1 million people in 2015
Western Wake Regional Water Reclamation Facility

❖ ~19 employees
❖ ~18 MGD liquid treatment
❖ Serves: Apex, Cary, Morrisville
Western Wake Regional Water Reclamation Facility

- Prior to drying at Western Wake
 - Lime stabilization
- High temp thermal drying at South Cary WRF
 - North Cary WRF
 - Apex WRF
Considered Technologies
Considered Technologies

- Considered various technologies during planning phase
 - *Keep Lime Stabilization (do nothing)*
 - *Digestion*
 - *Thermal Drying*
 - High, low or somewhere in between

- Drivers included
 - *Safety*
 - *End product quality*
 - *Cost*
Selection
Thermal Drying

- How do dryers differ?
 - Temperature
 - Feed system
 - Condensate system
 - Belt materials
 - Fans and blowers
Thermal Drying

Treatment Range

- **<180 F**
 - ★ Large Footprint
 - ★ Plastic Belts
 - ★ Requires more air
 - ★ Acid Corrosion Risk
 - ★ All Good ;)

- **180 to 350 F**
 - ★ Explosion Risk
 - ★ Dust Formation
 - ★ Operator Intense
 - ★ Corrosion Risk

- **> 350 to 1,800 F**
 - ★ Expensive
 - ★ Complex
 - ★ Operator Intense
 - ★ High Energy Usage

- **> 1,400 F**
Thermal Drying - Belt dryers

Feed System
- Hopper/sifter
- Single depositor
- Multiple depositors

Concerns:
- Single point of failure
- Dryer downtime

Photo Source: http://2gryphon.com/technology/modular-design-reduced-costs/
Thermal Drying - Belt dryers

- Dryer continues to operate uninterrupted with one dosing pump out of service
- Clogged depositors can be identified by looking into the dryer
- The clogged depositor can be isolated, removed, cleaned without interrupting the dryer
Condensate system
- Vertical Condensation
- Horizontal Condensation
- Condenser Coils

Photo Source: http://2gryphon.com/technology/modular-design-reduced-costs/
Thermal Drying - Belt dryers

Belt Material

- Plastic mesh
 - $150 \, C \, max \, temp$
 - Risk of melting/burning with temperature excursions
 - Low porosity
 - Fans
 - Clogging

- Stainless Steel
 - Long lasting
 - Can replace only section of belt
 - High porosity
 - Doors/access ports for service/viewing

Thermal Drying - Belt dryers

Fans and Blowers

- BioCon has 3 - 6 fans
 - *For circulating air within dryer*
 - *Located for easy maintenance*
- Other
 - *Forced air fans*
 - *Must overcome higher headloss through belt*
 - *Located on top of dryer*

Medium Temperature Belt Dryer

- Design minimizes noise, odor and dust production
 - Safe, simple and efficient
- Easy access for maintenance and sampling
 - Easy replacement and unclogging of nozzles
- Minimal operator intervention
- Remote monitoring capability
- Local support from Cary, NC

Dust and Energy
- Low Air Flow
- No agitation or back mixing

Safety

Odor Control
- Low Exhaust Air
- Negative Pressure

Medium Temperature Indirect Drying
Economic Analysis

<table>
<thead>
<tr>
<th>Step</th>
<th>Lime Stabilization</th>
<th>Digestion</th>
<th>Thermal Drying</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Ton, Sludge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Ton, Chem Sludge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSR, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS, End Product</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Product, WT/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End Product, DT/yr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disposal Cost/Revenue per Ton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Cost/Revenue (WT/yr)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Cost/Revenue (DT/yr)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Metrics

<table>
<thead>
<tr>
<th></th>
<th>Lime Stabilization</th>
<th>Digestion</th>
<th>Thermal Drying</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS, %</td>
<td>80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSR, %</td>
<td>55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DS, End Product</td>
<td>25%</td>
<td></td>
<td>90%</td>
</tr>
<tr>
<td>End Product, WT/yr</td>
<td>48,960</td>
<td>13,709</td>
<td>6,800</td>
</tr>
<tr>
<td>End Product, DT/yr</td>
<td>12,240</td>
<td>3,427</td>
<td>6,120</td>
</tr>
<tr>
<td>Disposal Cost/Revenue per Ton</td>
<td>($500,000)</td>
<td>($1,000,000)</td>
<td>($2,000,000)</td>
</tr>
<tr>
<td>Annual Cost/Revenue (WT/yr)</td>
<td>($1,958,400)</td>
<td>($548,352)</td>
<td>$68,000</td>
</tr>
<tr>
<td>Annual Cost/Revenue (DT/yr)</td>
<td>($489,600)</td>
<td>($137,088)</td>
<td>$61,200</td>
</tr>
</tbody>
</table>
Solution
BioCon® Medium Temperature Dryer
Air-to-Air Heater

- Plate and Frame Heat Exchanger
- Dryer air exits dryer cabinet and enters air heater via ductwork
- Dryer air exits air heater via ductwork returning to the dryer
- Flue gas exhausted to the stack
BioCon® Scope
Safety Equipment

Sprinkler system
- Installed inside dryer in case of a “thermal event”
- Activated by high temperature switches
- Sprinkler has separate valves for warm zone and end zone

Infrared level Switches
- Detect sludge back up in the system

Belt Speed Guards
- Detect solids are not moving adequately through the system

End Product
- N2 inerting
- Bag house for dust collection
BioCon® Design

- Design:
 - 3,800 lb/hr evaporative load per dryer (7,600 lb/hr total)
 - ~34,000 wet tons per year (15-18%DS)
 - Ability to incorporate imported sludge with native
 - Recirculation lines on wet cake silos
 - Dryer bypass

- Commissioning completed 2015

- Product sold and transported off-site by outside vendor for soil amendment
BioCon® Operation

Current Operation:
- Dewater native sludge
- Mix liquid sludge from Apex with native before dewatering
- One dryer operates 3-4 days per week
BioCon® Operation

- Daily sludge to dewatering
- Silo provides temporary wide spot between dewatering and drying

![Graph showing BioCon® Operation](image)
BioCon® Performance

- Roll Crusher
- Surge Bin
- Pellet Mill
- Cooler
- Hopper
- Crumbler
- Screen

Fines Recycle

ENHANCED END PRODUCT
Summary

- Ideal solution for achieving Class A without digestion
- Easily store dry product over winter months
- Growing bio-fertilizer market has potential for generating revenue

<table>
<thead>
<tr>
<th>Units</th>
<th>Before Drying</th>
<th>After Drying and Pelletizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge Receiving</td>
<td>$/gallon</td>
<td>$0.03</td>
</tr>
<tr>
<td>Revenue from 3rd Party Sale</td>
<td>$/DT</td>
<td>-$40.00</td>
</tr>
<tr>
<td>Revenue from Private Sale</td>
<td>$/DT</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Questions

Meg Hollowed
meg.hollowed@veolia.com

Sudhakar Viswanathan
sudhakar.viswanathan@veolia.com
Delivery & Installation
Delivery & Installation