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01 Basics of Air-Water 
Interactions



 Forces at work
o Friction
o Pressure-gradient
o Buoyancy

 Of interest for many types of 
hydraulic structures
o Dam spillways and outlet gates
o Inverted siphons
o Pipelines
o Drop shafts
o Closed conduits

Basics of Air-Water 
Interactions



02 Factors Affecting Air Flow 
in Sewers and Tunnels



 Friction drag force
 Displacement air
 Flushing airflow effect
 Buoyancy airflow effect
 Drop structure eduction

What Causes Air Flow in Sewers and Tunnels



 Friction drag force – any sewer/tunnel with hydraulic flows
 Displacement air – occurs while sewer/tunnel is filling (storm or diurnal)
 Flushing airflow effect – rapid displacement, at the start of storm events
 Buoyancy airflow effect – sewer/tunnel with no dry weather flows, cold-weather climate
 Drop structure eduction – large-diameter tunnels
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 Flowing wastewater results in friction at air-
water interface, which induces flow of air

 Predominant factor influencing ventilation in 
sewers and tunnels with dry-weather flows

 Air flows maximized when d/D = 0.5
 Modeled by Pescod & Price (1982)
 More recent models developed
o HDR First Principles
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 Rising water levels during wet-weather events forces air out of the sewer or tunnel
 Air Emission Time and Flow Rate – inversely proportional
 Tends to exhaust at the farthest downstream outlet that is not occluded (blocked) by water levels

Displacement Air



 Short-term displacement event in which a nearly-empty tunnel experiences a rapid inflow of water
 Can create high air pressures, blowing manhole covers or damaging ventilation structures 
 Mitigate through design by spreading out hydraulic inlets to tunnel/sewer

Flushing Airflow Effect



 Temperature difference between tunnel air 
and atmospheric air causes pressure 
gradient

 Most common during cold weather
 Air flow travels upstream
 Has been observed in tunnels with no dry 

weather flow

Buoyancy Effect
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 Acceleration of falling wastewater induces 
airflow as a result of drag force

 Increased surface area → greater airflow
 Mitigation options:

Drop Structure Eduction



 Acceleration of falling wastewater induces 
airflow as a result of drag force

 Increased surface area → greater airflow
 Mitigation options:
o Baffle drop structure → reduce formation of 

droplets and dissipate energy

Drop Structure Eduction



 Acceleration of falling wastewater induces 
airflow as a result of drag force

 Increased surface area → greater airflow
 Mitigation options:
o Baffle drop structure → reduce formation of 

droplets and dissipate energy
o Return air duct → reduce net airflow into 

tunnel

Drop Structure Eduction



03 Airflow & Odor 
Considerations for Sewer 
Design



 Friction drag
o Minimize slope/diameter changes
o Wind over an open stack/manhole can induce 

air flow – seal or use dampers.
o Select pipe diameters considering both 

wastewater flow rate and air flow at different 
storm conditions

 Displacement airflows
o Consider occlusion of the sewer/tunnel during 

different storm conditions
 Buoyancy airflows
o Consider siting of tunnel drop shafts
o Use of dampers to manage airflow

Considerations for Sewer and Tunnel Ventilation Design



 Drop structure eduction
o Mitigate through design

 Flushing airflow
o Allow sewer/tunnel to “breathe”
o Hydraulic modeling of flow inputs

 Other considerations:
o Use of a fan to pull air from a sewer or tunnel
o Selection of Materials: Consider corrosion 

resistant materials

Considerations for Sewer and Tunnel Ventilation Design



04 Case Study: Doan Valley 
Tunnel (NEORSD)



 Northeast Ohio Regional Sewer District 
(NEORSD)

 DVT project team: 
o McMillen Jacobs Associates and Wade Trim 

Joint Venture
o HDR subconsultant to Joint Venture

 HDR performed ventilation study
 Ventilation study goals:
o Provide review of existing odor control (air 

treatment) technologies and case studies
o Determine potential locations of odorous air 

emissions
o Evaluate potential capital costs and required 

land areas for odor control facilities

Case Study: Doan Valley 
Tunnel (NEORSD)
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 Project Overview
o 3.7 miles total of rock tunnel
o 18-ft to 8.5-ft diameter
o (3) Tunnel segments
o (6) Shaft sites
o Contractor: McNally/Kiewit JV
o Scheduled Completion: End of 2021
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 Ventilation Evaluation
o Technology, Industry Reviews
o Two conditions:

• Dry weather
• Wet weather (1-month, 6-hour storm)

 Study Deliverables:
o Locations of pressurization and approximate 

air emission flow rates (friction drag)
o Theoretical buoyancy flow rates at each shaft
o Odor control facility alternatives

• Locations, prioritized
• Cost estimates
• Required footprint
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DVT System Schematic for Analysis
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DVT System Schematic for Analysis
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Results
o Risk of emissions during dry & wet 

weather:
• DVT-1
• WCT-2
• DSRCS-6

o Risk of emissions during wet weather:
• MLK-1

o Low risk of emissions:
• WCT-3
• WCT-1 FCS (duct carries airflow to 

DVT-2)
• MLK-2

Doan Valley Tunnel



Odor Control Alternatives
Doan Valley Tunnel

No. Alternative Cost ($MM) Footprint (SF)
1 No OCFs $0 0

2a DVT-1 OCF: 30,000 cfm (AC) $1.72 DVT-1: 1,500

2b DVT-1 OCF: 30,000 cfm (AC)
WCT-2 OCF: 5,000 cfm (AC)

$2.35 DVT-1: 1,500
WCT-2: 250

3a DVT-1 OCF: 15,000 cfm (BF)
DVT-2 OCF: 15,000 cfm (BF)

$2.43 DVT-1: 16,500
DVT-2: 8,200

3b DVT-1 OCF: 15,000 cfm (BF)
DVT-2 OCF: 15,000 cfm (BF)
WCT-2 OCF: 5,000 cfm (AC)

$3.06 DVT-1: 16,500
DVT-2: 8,200
WCT-2: 250

4 Option 2a, 2b, 3a, 3b PLUS:
MLK-1 OCF: 5,000 cfm (AC, AD)

$2.35-$3.69 MLK-1: 250

AC: Activated Carbon
BF: Biofilter
AD: Air Dispersion

Note: costs in 2016 dollars.



Recommendations
o Planning for space/footprint on site, 

should potential odor control facilities be 
needed, at four sites:
• 30,000 CFM activated carbon at DVT-1 

OR 15,000 CFM biofilter at DVT-1 and
15,000 CFM biofilter at DVT-2

• 5,000 CFM activated carbon at MLK-1
• 5,000 CFM activated carbon at WCT-2

o Further ventilation evaluation under a 
greater range of storm conditions

Doan Valley Tunnel
Doan Valley 
Storage Tunnel

MLK Conveyance 
Tunnel

Woodhill 
Conveyance 
Tunnel

Prop. 15K CFM Odor 
Control Facility

Prop. 15K CFM Odor 
Control Facility

Prop. 5K CFM Odor 
Control Facility



05 Case Study: Ohio Canal 
Interceptor Tunnel 
(City of Akron)



 City of Akron Water Reclamation Services
o Serves City of Akron and neighboring 

communities
o 96 square miles, population of 330,000
o Akron Waterways Renewed! 

• Series of projects to reduce CSOs
• OCIT:  largest AWR project - $300M

 OCIT Team: 
o DLZ:  Lead Designer
o McMillan-Jacobs:  Tunnel Designer
o HDR: Odor Evaluation & Design

Ohio Canal Interceptor 
Tunnel (OCIT)



 6,200 linear feet, 27-foot diameter
 Contractor: Kenny Obayashi Joint Venture
 Completion 2020
 Three dropshaft sites:
o OCIT-1/TDS: Downstream, residential
o OCIT-2: Midpoint, potential future development
o OCIT-3: Downtown

 HDR has performed the following:
o Odor evaluation of existing system
o OCIT ventilation study
o OCIT odor control facility plan
o OCIT-1 odor control facility design

Ohio Canal Interceptor 
Tunnel (OCIT)



 Ventilation Evaluation
o Technology review
o Typical year storm data

 Facility Plan Deliverables:
o Frequency/duration/intensity of odorous air 

emissions – friction drag and displacement
o Odor control facility alternatives

• Site layouts
• Cost estimates
• Level of service

Ohio Canal Interceptor 
Tunnel (OCIT)



A picture of 0.1% of the data…



Dry Weather Flow (d/D ≅ 0.07)
Frequency Duration Return Interval

N/A >90% of Year
(>328 days/yr) N/A



d/D at TDS ≥ 0.3
Frequency Duration Return Interval

22 / yr
Avg event: 5.2 hrs

Max event: 20.4 hrs
Total annual: 124 hrs

<2 month



d/D at TDS = 0.45 to
d/D at TDS = 0.65

Frequency Duration Return Interval

13 / yr
Avg event: 2.2 hrs
Max event: 5.1 hrs

Total annual: 28.2 hrs
<2 month



d/D at TDS = 0.65 to
d/D at TDS = 1.0

Frequency Duration Return Interval

6 / yr
Avg Event: 4.5 hrs
Max Event: 7.6 hrs

Total Annual: 26.8 hrs
>2 month



d/D at TDS = 1.0 to
d/D at OCIT-2 = 1.0

Frequency Duration Return Interval

5 / yr
Avg Event: 1.8 hrs
Max Event: 2.5 hrs

Total Annual: 8.8 hrs
>3 month



d/D at OCIT-2 = 1.0 to
d/D at OCIT-3 = 1.0

Frequency Duration Return Interval

5 / yr
Avg Event: 1.8 hrs
Max Event: 2.5 hrs

Total Annual: 8.8 hrs
>3 month



d/D at OCIT-3 > 1.0
Frequency Duration Return Interval

5 / yr
Avg Event: 1.8 hrs
Max Event: 2.5 hrs

Total Annual: 8.8 hrs
>3 month





Ohio Canal Interceptor Tunnel
Airflow Scenario Frequency and Duration



Untreated Airflow Emissions at TDS at Various OCF Levels of Service 
Ohio Canal Interceptor Tunnel – Level of Service

TDS OCF 
Capacity (cfm)

Level of Service Frequency of Untreated 
Emissions

Duration of Untreated 
Emissions

30,000 DWF Only 10% of typ year.
100+ / yr

Avg: 8 hrs / event
Max:  34 hrs / event
Annual:  40 days / yr

40,000 DWF + minor WWF 
(d/D<0.15)

40 / yr Avg: 5 hrs / event
Max: 21 hrs / event
Annual: 16 days / yr

60,000 DWF + moderate WWF 
(d/D<0.35)

14 / yr Avg: 5.5 hrs / event
Max:  20 hrs / event
Annual: 3 days / yr

80,000 DWF + all WWF <1 / yr N/A



 Recommendations:
o Air Flaps/Ducts throughout system (Auxiliary 

Structures)
o OCIT-1 Odor Control Facility
o OCIT-2 Air Jumper
o OCIT-3 Air Dispersion Stack

Ohio Canal Interceptor 
Tunnel



Odor Control Alternatives
Ohio Canal Interceptor Tunnel

No. Alternative Cost 
($MM)

1 -OCIT-1 Odor Control Facility, 30,000 cfm
-OCIT-2 Air Jumper
-Ventilation “Auxiliary Structures”

$5.06

2 Alternative 1 PLUS:
-OCIT-2 Odor Control Facility

$6.70

3 Alternative 2 PLUS:
-OCIT-1 Odor Control Facility, add’l 50,000 cfm
-OCIT-3 Odor Control Facility

$9.99



OCIT-1 Odor Control Facility
o Technology Selection Workshop
o 30,000 cfm Activated Carbon system

• Two 15,000 cfm fans
• Sized to induce negative pressure throughout entire tunnel system

o Vent Vault for control of excess air flows

Ohio Canal Interceptor Tunnel



OCIT-1 Odor Control Facility Plan View
OCIT



Vent Vault Structural Section
OCIT



06 Summary



 Air-water interactions are key to many types of structures, including sewers
 Several mechanisms ventilate and move air within sewers and tunnels
 Consider air flow when designing sewers and tunnels.  
o Ventilation considerations may affect sewer diameters and potential air ducts.

 For complex tunnel systems, evaluate the air flow and ventilation strategies of the entire system 
holistically early in the design

 Two case studies were presented in which tunnels under design were assessed for ventilation 
and odor control planning

 Proactive air management strategies decrease operations risk upon start-up / commissioning

Summary
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