A Tale of A Corroded Pipe: Failures, Analysis and Mitigation

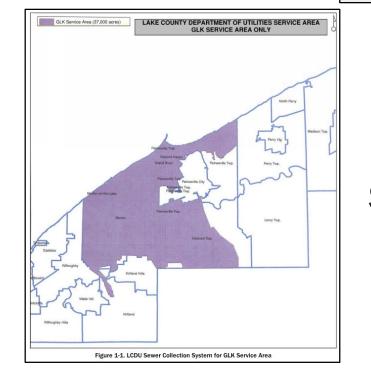
Marissa Lauer – Brown and Caldwell Mike Erkkila – Lake County Department of Utilities June 26, 2019

Agenda

- LCDU and The Far Hills Force Main
- Pipe Corrosion Contributing Factors and Assessment Techniques
- Far Hills Condition Assessment
- Recommendations for Future Mitigation
- Engineering Operational Ability
- Other Anode Installation
- One Year Later
- Proactive Measures

LCDU and The Far Hills Force Main

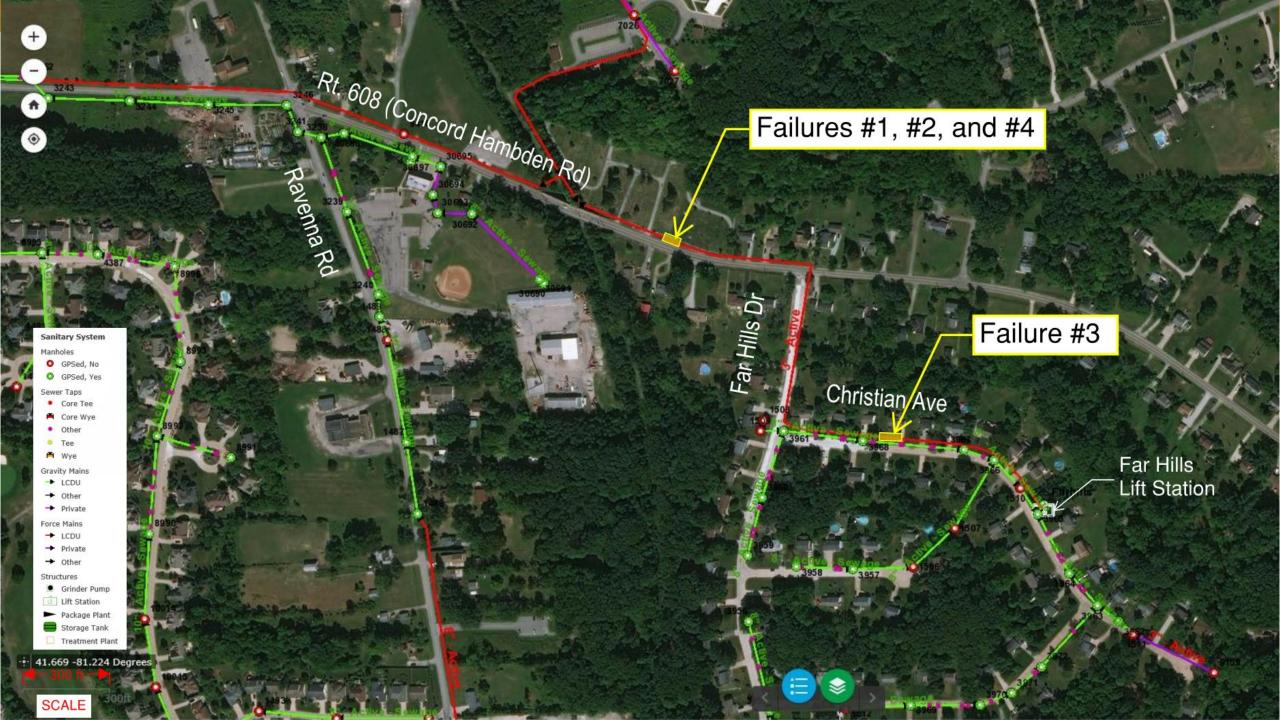
Lake County Department of Utilities (LCDU)


- Gary L. Kron (GLK) Water Reclamation Facility
- 20 MGD design flow / 55 MGD peak hydraulic capacity
- Began operation in 1963
- Discharges to Lake Erie

Number of Pump Stations	32
Number of Grinder Pumps	55
Total Length of Gravity Lines (miles)	463
Total Length of Force Main (miles)	35
Service Area (square miles)	58
Population Serviced	90,000

Lake County, Ohio

GLK Service Area


The Far Hills Force Main

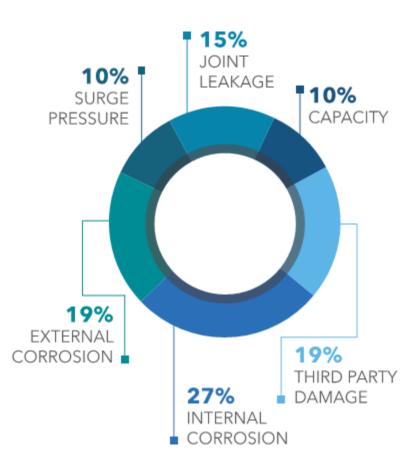
- Located in Concord Township (Lake County)
- ~4,500 LF of 3"/4" ductile iron sanitary force main
- Begins at the Far Hills Pump Station
- Installed in 1993 (25 years old)
- Lake County hired Brown and Caldwell (BC) in Spring/Summer 2018 to investigate the Far Hills force main and its recent failures

4 Separate Failures in February 2018

- All within 1/4 mile radius of one another
- No apparent changes in weather or flow characteristics
- Failed segments removed and retained, existing pipe repaired, trenches backfilled
- Failures resulted in sanitary sewer overflows (SSOs)
- Pipeline not historically failure-prone

Apparent Cause: Exterior Corrosion ("Differential Aeration Cell")

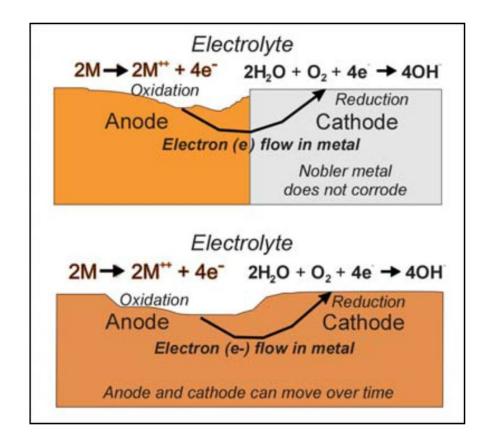
All failures occurred at the pipe invert



Pipe Corrosion – Contributing Factors and Assessment Techniques

Force Main Failures – By The Numbers

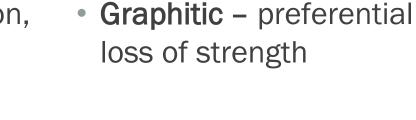
- 63% of force mains in the U.S. are metallic pipe (cast iron, ductile iron, or steel)
- About half of force main failures are due to external or internal corrosion
- A quarter of force main failures are due to surge pressure and joint leakage
- → Nearly 75% of force main failures are preventable



Source: Implementing A Proactive Approach to Force Main Asset Management, Xylem.

General Exterior Corrosion Factors

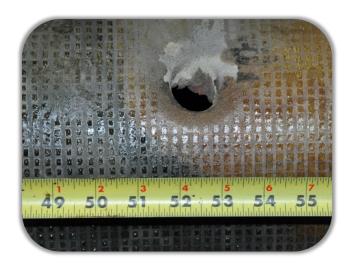
- Aggressive electrolyte (soil, water)
- Lack of or ineffective cathodic protection
- Stray current interference
- Potential for increased rate of corrosion at or near repair sites
- Poor or lack of a corrosion resistant coating


Differential Aeration Cell

- Highly aerated environments influence the corrosion of iron and other metals
- An uneven supply of air on the metal surface creates anodic (oxygen-rich) and cathodic (oxygen-starved) sites
- Can be caused by crevices, lap joints, dirt and debris, moist insulation

Cast and Ductile Iron Corrosion

 Electrolytic – perforation, localized pitting



 Stray current – pipe becomes part of an electrical circuit involving a foreign direct current source

Corrosion Assessment Techniques

Soil Testing

- Soil chemistry, Wenner 4-Pin method (soil resistivity) Acoustic Systems
 - Acoustic leak detection, free swimming leak detection
- **Electromagnetic Systems**
 - Remote field eddy current, pipe penetrating radar

Ultrasonic Systems

• Ultrasonic testing, long range guided wave

Visual Systems

• Sonar, laser profiling, CCTV

Far Hills Corrosion Assessment

Why Perform a Corrosion Assessment?

- Understand cause of pipe failures
- Identify areas requiring immediate attention
- Mitigate risk
 - Improve rehab, repair, and replacement strategies / develop proactive planning
- Reduce occurrence of failures
- Reduce capital costs
 - Condition assessment programs can be implemented at about 5-15% of the cost of replacement
- Increase confidence / ensure safety in the overall operations of force mains for both LDCU and the public

Field Study, May - June 2018

Phase 1

- Environmental assessment along select points of the force main
- Goal
 - Gather data to evaluate whether or not the conditions which led to recent failures were present throughout the alignment

Phase 2

- Direct assessment of the force main
- Goals
 - Determine the remaining wall thickness
 - Facilitate the installation of cathodic protection (sacrificial anodes) at the most vulnerable sites

Project Team

Brown and Caldwell

- Management
- Coordination
- Direct pipe assessment
- Reporting
- Instruction on sacrificial anode installation

Corrosion Probe, Inc.

- Soil testing
- Direct pipe assessment
- Reporting
- Instruction on sacrificial anode installation

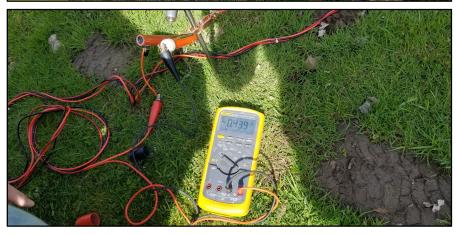
Lake County

- Coordination
- Traffic control
- Safe excavation
- Materials for anode installation (via this project)

Phase 1 – Environmental Assessment

11 ground surface tests

Surface pH



Ductile iron typically corrodes faster in these soil conditions:

• Acidic pH

Soil resistivity averaged over 2.5 FT, 5.0 FT and 7.5 FT depths

• Low resistivity

Surface oxidation and reduction (REDOX) potential

• Negative REDOX potential

Phase 1 – Environmental Assessment (Contd.)

6 soil samples

- Soil type and condition
- Specific soil resistivity
- Water content
- pH
- REDOX potential
- Calcium and magnesium carbonate content
- Presence of sulfides
- Chloride and sulfate ion concentrations

101	
Sani	itary System
Mani	noles
0	GPSed, No
0	GPSed, Yes
Sew	er Taps
•	Core Tee
-	Core Wye
•	Other
	Tee
-	Wye
Grav	ity Mains
-	LCDU
+	Other
+	Private
Force	e Mains
-	LCDU
+	Private
+	Other
Strue	ctures
۰	Grinder Pum
LS	Lift Station
-	Package Plan
	Storage Tan
	Treatment P

SCALE

٢

Soil resistivity (ohm cm)	Corrosivity Rating
<1,000	Very severely corrosive
1,000 - 2,300	Severely corrosive
2,301 - 5,000	Moderately corrosive
5,001 - 10,000	Mildly corrosive
10,001 – and greater	Very mildly corrosive

Ravenna Rd

Soil Resistivity / Corrosivity Classifications: Zones 1 and 3 = More moderate to mild Zone 2 = More severe

All soil samples = aggressive 41.669 -81.224 Degre Acidic pH and weakly aerated / aerated soils

3 "Zones" of Soil Resistivity

Failures #1, #2, and #4

Christian Ave

ZONE 2

'Hills Dr

Rt. 608 (Concord Hambden Rd)

Failure #3

Far Hills ift Station

ZONE 3

Ground Surface Test Site

Soil Sample

Other Phase 1 Findings

- Pipeline is not electrically continuous
- 2 natural gas pipelines in area (1 confirmed protected by anodes, other unknown)

Exterior Corrosion Prediction Holds True

- Field and lab analysis from Phase 1 suggested the mechanism of pipe deterioration was exterior corrosion (differential aeration cell) as predicted
 - Graphitic and/or electrolytic corrosion

Phase 2 – Direct Assessment

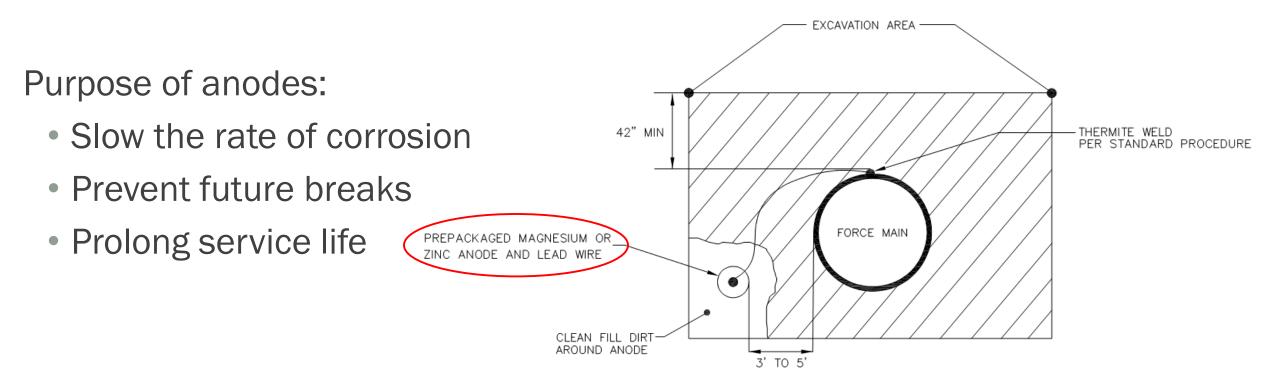
3 direct assessments of the pipe (one in each "Zone")

- Visual observations
- Wall thickness measurement using an ultrasonic gauge (UT Testing)



Phase 2 – Direct Assessment (Contd.)

- The original surface texture of the pipe was still visible in most areas, but some pitting corrosion was found at the pipe invert
- The pitting was observed to be very deep and soft
- A repair clamp was installed over top of a pipe area nearing failure



Phase 2 – Direct Assessment (Contd.)

3 sacrificial magnesium anodes (32 lbs.) were provided and installed on the force main to provide cathodic protection

Phase 2 – Direct Assessment (Contd.)

Why 32 lbs.?

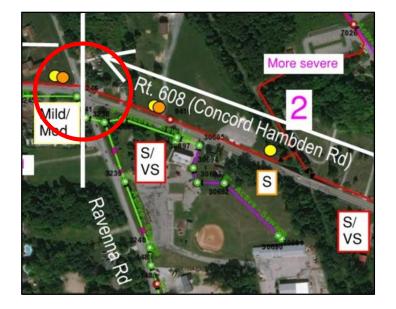
- Expected to provide sufficient protection for ~10 years under normal conditions
- Inexpensive (~\$200 with welding supplies)

Easy to handle

Heavier anodes = more Mg^{2+} = longer lasting (but are more costly and difficult to handle)

Anode Installation

Remaining Factor of Safety (FOS)


- UT readings were used to calculate the remaining FOS of the pipe wall thickness
- Determined in accordance with AWWA C150 Thickness Design of Ductile Iron Pipe
- A safety factor of 2.0 is typically used in design calculations
- All found to be well above (>10)
- Far Hills FM appears to have provided a generous corrosion/material defect allowance
- \rightarrow Un-pitted and areas with limited pitting have sufficient strength to remain in service

Ultrasonic Wall Thickness Testing Factors of Safety			
Force Main Location	Minimum Wall Thickness Reading (inches)	Average Wall Thickness Reading (inches)	Limiting Factor of Safety
Location #1	0.315	0.351	> 10
Location #2	0.258	0.310	> 10
Location #3	0.225	0.270	> 10

Other Phase 2 Findings

- Microbiological influenced corrosion (MIC) may also be occurring on some sections of the pipe exterior
 - Black scale/slime (possibly iron sulfide) on pipe exterior
 - UT measurements suggested general pipe thinning
- De-icing salt is heavily applied at the intersection of Rt. 608 and Ravenna Rd ("Zone 2")
 - De-icing salt can lead to corrosion as it leaches into the soil and increase chloride and sulfide content, reduce resistivity
 - Observations were consistent

Assessment Conclusions – Field Findings

- Potentially corrosive environmental conditions exist throughout the pipe alignment
- "Zone 2" had the most corrosive conditions
- Conditions that appeared to contribute to the corrosion include:
 - Moist soil
 - Possible different soil strata/layers
 - Bare pipe exposed to the corrosive soils
 - Low pH
 - No external corrosion protection
 - Low soil resistivity
- Widespread pitting was not found the pipeline does not appear to be experiencing universal corrosion
- Wall thickness tests showed areas with limited or no corrosion had more than adequate wall strength to continue service

Assessment Conclusions – Summary

- Corrosion has occurred in localized areas
- Additional failures may occur
- Sacrificial anode installation is feasible when excavations occur
- The 4 recent failures do not presently appear to be indicative of a larger trend that would indicate the entire pipeline is beyond its useful life

Engineering – Operational Ability

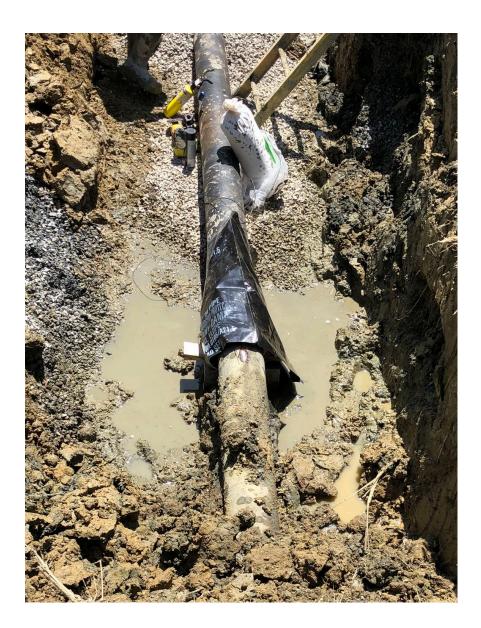
Other Anode Applications – "A Tale of Corroded Pipes"

- Timeline of Events
 - 5/13/19
 - 5/14/19

• What can go wrong, will go wrong!

- Williams Pump Station Force Main
 - Located in Grand River, Ohio
 - Similar pipe, soil characteristics, and number of breaks as the Far Hills FM
- Photos: What we found?

Williams Force Main Break – May 2019



Williams Force Main Break Photo Gallery

One Year Later

- All 10 anodes have been used within the GLK Collection System
- A new order of 10 anodes on order
- Employee Training
 - All Collections Personnel have been trained
 - We were also able to extend an invite to LCDU Water Distribution

Continued Above Ground Force Main Inspections

- Original commitment annual inspections
- With the increased likelihood of breaks, LCDU is now conducting inspections quarterly at the Far Hills and Williams force mains

Proactive Measures – Sanitary Sewer Overflow Reporting

- "Steps taken or planned to <u>eliminate</u> <u>and/or reduce the overflow</u> – include schedule of major milestones"
- "Steps taken or planned to <u>prevent</u> <u>reoccurrence of the overflow(s)</u> - include schedule of major milestones"

ChigEPA State of Ohio Environmenta Ohio EPA Form 4237 Issued 08/04	I Protection Agency		-	er Overf Up Repo			Steps taken or pla eliminate and/or re overflow – include of major milestone
	Report Si	bmitted by:				_ I	
Date	Report St	billitted by.					Steps taken or pla
Facility Name							prevent reoccurren
Ohio NPDES Permit No.							overflow(s) - inclu
Period Covered by Report							schedule of major
Contact Person Name							milestones
Contact PersonTitle							
Mailing Address						_ I	
City, State, Zip						_ L	Steps taken or plan
County							mitigate the impact
Telephone No.							overflow(s) – inclu schedule of major
E-mail Address							milestones
Signature required at end o	f form						
	Overflow	Information					
Event start date and time -							
if multiple locations, include information for each							Additional informat (attach additional)
Event end date and time							maps, etc. as need
Location(s) the SSO – include unique ID number if one exists							
Destination(s) of overflow	Basement or buildin Directly to receiving		Storm	n sewer to receivi	ing water		
Specific receiving water(s) (if applicable)	Directly to receiving						
Estimated volume (million gallons) – if multiple locations, include volume for each							
Sewer system component(s) from which release occurred	Manhole Con Other (explain)	structed overflow	Pipe cra	ack 🔲 Pump	station		
							I CERTIFY THAT REPORT AND AL
Cause(s) of overflow	Extreme weather Debris in line Other blockages Other (explain)	Equipment Roots Line deteri		Power failur Grease Vandalism	e		COMPLETE.
	(Signature
EPA 4237 (08/04)				Page 1 of 2			Title
	Click to c	lear all entered infom	mation (on both	pages of this form	CLEAR		EPA 4237 (08/04)

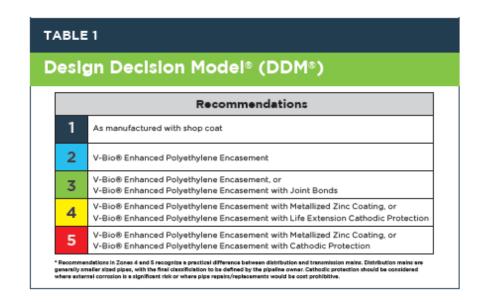
Steps taken or planned to eliminate and/or reduce the overflow – include schedule of major milestones	
Steps taken or planned to prevent reoccurrence of the overflow(s) – include schedule of major milestones	
Steps taken or planned to mitigate the impact(s) of the overflow(s) – include schedule of major milestones	
Additional information (attach additional pages, maps, etc. as needed)	

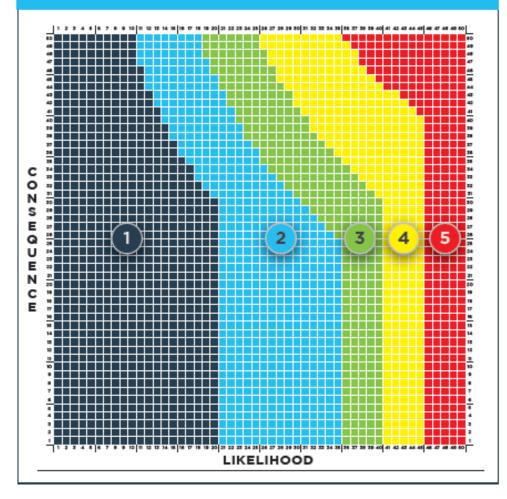
CERTIFY THAT I HAVE PERSONALLY EXAMINED AND AM FAMILIAR WITH THE INFORMATION IN THIS EPORT AND ALL ATTACHMENTS. I BELIEVE THAT THE INFORMATION IS TRUE, ACCURATE, AND OMPLETE.

hare Dat

Page 2 of 2

Far Hills Force Main Break – June 2019




The Design Decision Model

- DIPRA and Corrpro's risk-based model for corrosion control of ductile iron pipe
- Balances the likelihood of a corrosion-related concern against the consequences of such an occurrence

FIGURE 1

DDM® Two-Dimensional Matrix

The Design Decision Model (Contd.)

TABLE 2

Likelihood Score Sheet

LIKEL	IHOOD FACTOR	POINTS	POSSIBL POINTS
RESISTIVITY	< 500 ohm-cm	30	30
	≥ 500 - 1000 ohm-cm	25	30
	> 1000 - 1500 ohm-cm	22	
	> 1500 - 2000 ohm-cm	19	
	> 2000 - 3000 ohm-cm	10	
	> 3000 - 5000 ohm-cm	5	
	> 5000 ohm-cm	o	
CHLORIDES	> 100 ppm = positive	8	8
	50 - 100 ppm = trace	3	
	< 50 ppm = negative	0	
MOISTURE	> 15% = Wet	5	5
CONTENT	5 - 15% = Moist	2.5	
	< 5% = Dry	0	
GROUND WATER	Pipe below the water table at any time	5	5
рН	pH 0-4	4	
	pH > 4 - 6	1	4
	pH 6 - 8, with sulfides		
	and low or negative redox	4	
	pH > 6	0	
SULFIDE	positive (≥1 ppm)	4	4
IONS	trace (> 0 and < 1 ppm)	1.5	
	negative (0 ppm)	0	
REDOX	= negative	2	2
POTENTIAL	= positive 0 - 100 mv	1	
	= positive > 100 mv	0	
BI-METALLIC CONSIDERATIONS	Connected to noble metals (e.g. copper) - yes	2	2
	Connected to noble metals (e.g. copper) - no	0	
	TOTAL POSSIBLE POINTS		60
Known Corrosive Environments	Cinders, Mine Waste, Peat Bog Landfill, Fly Ash, Coal	g,	21

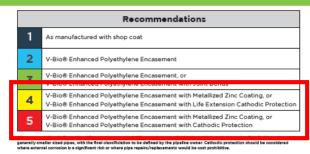
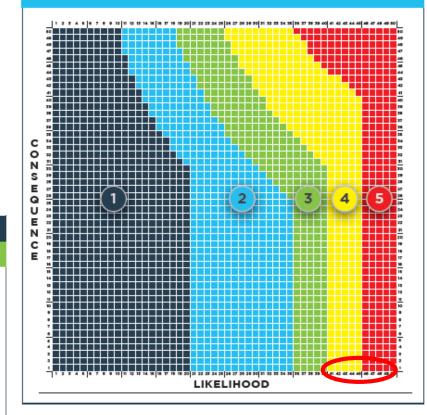

* Soils with Known Corrosive Environments shall be assigned 21 points or the total of points for Likelihood Factors, whichever is greater.

TABLE 3

CONSEQUENCE FACTOR		POINTS	MAXIMUM POSSIBLE POINTS
PIPE SERVICE	3" to 24" 30" to 36" 42" to 48" 54" to 64"	0 8 12 22	22
LOCATION: Construction-Repair Considerations	Routine (Fair to good access, minimal traffic/other utility consideration, etc.)	o	20
	Moderate (Typical business/ residential areas, some right of way limitations, etc.)	8	
	Difficult (Subaqueous crossings, downtown metropolitan business areas, multiple utilities congestion, swamps, etc.)	20	
DEPTH OF COVER CONSIDERATIONS	0 to 10 feet depth > 10 to 20 feet depth > 20 feet depth	0 3 5	5
ALTERNATE WATER SUPPLY	Alternate supply available - no Alternate supply available - yes	3 0	3
	TOTAL POSSIBLE POINTS	1	50

TABLE 1


Design Decision Model® (DDM®)

Far Hills Force Main

FIGURE 1

DDM® Two-Dimensional Matrix

GIS Layer for Break/Anode Site Monitoring

- Lake County created a GIS layer to assist pipe monitoring efforts
 - Easily identify break sites and anode install locations
 - Collect and store data on anode and repaired pipe conditions

Control Valves: Anode				
Facility ID	1271			
Valve Type	Anode			
Install Date				
Location Description				
Diameter				
Owned By	LCDU			
Managed By	GLK-LCDU			
Enabled	True			
Condition Score				
Condition				
• • •				

Thank you. Questions?

Marissa Lauer – <u>mlauer@brwncald.com</u> Mike Erkkila – <u>michael.erkkila@lakecountyohio.gov</u>