

# How and Why to Monitor ATP for Biological Growth

Ted Simmons – Regional Sales Manager, Southern Ohio tsimmons@hach.com

### **Agenda**

- Overview of the Hach Company
- Hach and LuminUltra
- What is ATP
- Options for testing
- What is the value of knowing the microbial load
- Advance testing from LuminUltra
- Process ATP testing is EZ



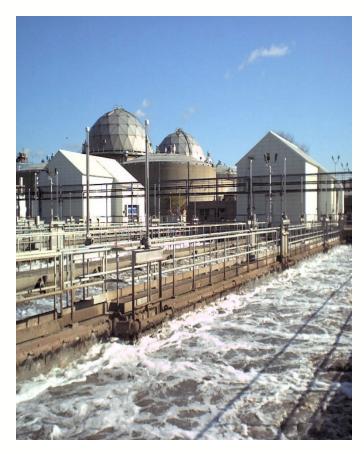
# **Overview of Hach Company**

- Began in 1947 in Ames, IA
- 1999: Acquired by Danaher Corporation
- Manufacturer of industrial and municipal water analysis solutions
  - process and laboratory instruments
  - chemistries
  - service and software
- Innovation leader
  - 527 patents, 130 patent families
  - strong investment in R&D and acquired technologies

### OUR MISSION

Ensure water quality for people around the world.

### OUR VISION


We make water analysis better—faster, simpler, greener and more informative—via unsurpassed customer partnerships, the most knowledgeable experts, and reliable, easy-to-use products.





# **Overview of Hach Company**

- 70<sup>+</sup> RSM's
  - Regional Sales Managers
- 25<sup>+</sup> CAM KAM ADM TSS CSS
  - CAM Corporate Account Managers
  - KAM Key Account Managers
  - ADM Application Development Managers
  - TSS Technical Sales Specialist
  - CSS Complex Sales Specialist
- 100+ Field Service Technicians
  - Field Service Partnerships
  - Startups, Commissioning and Training
- 41<sup>+</sup> Technical Support Representatives
  - Global Customer Support
- 12<sup>+</sup> Bench Service Technicians
  - Two service centers for repair and certification







### Hach and LuminUltra Teaming Up



### May of 2013

- Hach is a non-exclusive distributor of the LuminUltra Product Line
- Tech Support will be prepared to answer questions related to the following
  - Pre-Sale questions related to LuminUltra product offering
  - Ability to identify customers that may be interested in ATP testing
  - Ability to specify the correct LuminUltra test kits for different applications
  - Post-Sale troubleshooting of LuminUltra product offering
  - Exhibit elite level of support, ownership, and product knowledge LuminUltra product line





# LuminUltra offices spread across the globe

3.5K

Customers from around the world leverage LuminUltra's testing solutions

# About LuminUltra

Founded in 1995, LuminUltra is a biological diagnostic testing company headquartered in Canada with operations in 6 countries. It is widely recognized globally as a leader in developing tests and reagents for environmental, industrial, and diagnostic monitoring and is a key supplier of COVID-19 clinical testing reagents to the Government of Canada. Customers in over 80 countries trust LuminUltra's technology, production reliability and history of customer service excellence to deliver their essential services in a safe state.

**80+** 

Countries with customers that rely on LuminUltra's products and services

\$345M

In customer value delivered to date

**25** 

Years of exceptional production reliability and innovation

500K

Clinical COVID-19 testing reagents per week being supplied to Canada

Melbourne

LuminUltra proudly serves some of the top companies in the world including:



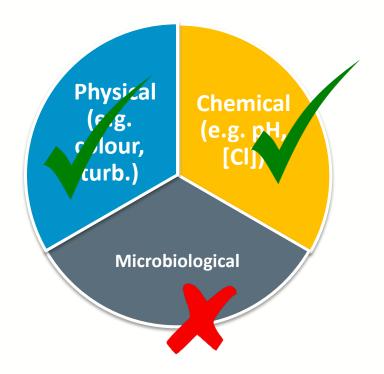













## The Water Quality Toolbox

- Many physical and chemical parameters can be determined in minutes (or instantly via online analyzers).
- The technology has not existed to allow microbiological analyses to be done in the field and produce results quickly.

© 2020 LuminUltra Technologies Ltd

 This results in significant limitations in water quality control capabilities.







### The Problem

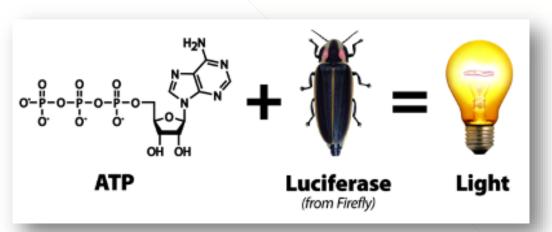


- Several Hach products give water testers the ability to *quickly* and easily assess several water quality parameters, such as:
  - Temperature
- Turbidity

pН

Color

**Alkalinity** 

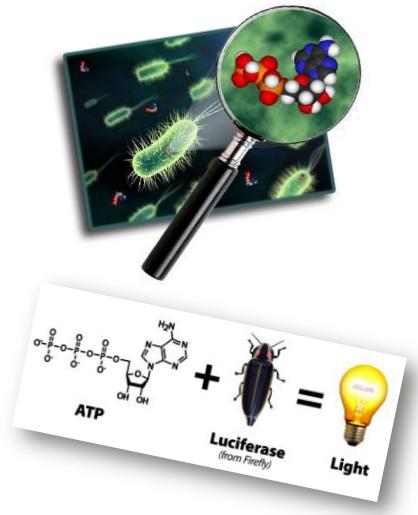

TDS

But what about *quick assessments* about *biological activity*? Options are



### What is ATP?

- ATP = Adenosine Triphosphate
  - Primary energy carrier for all life.
  - Measurement takes only minutes.
- Since ATP is present in ALL living cells, quantifying it enables you to detect the entire population rather than just culturable cells.
- ATP testing has been used in food & medical hygiene for decades.






# The Basics of ATP Monitoring

Be Right™

- ATP = Adenosine Triphosphate
  - Primary energy carrier for all life.
  - Measurement takes only minutes.
- LuminUltra is the first and only company to provide 2<sup>nd</sup> Gen. technology designed for fluid systems (far more sensitive, robust and reliable).







### **Industry Standard – HPC**

### Be Right™

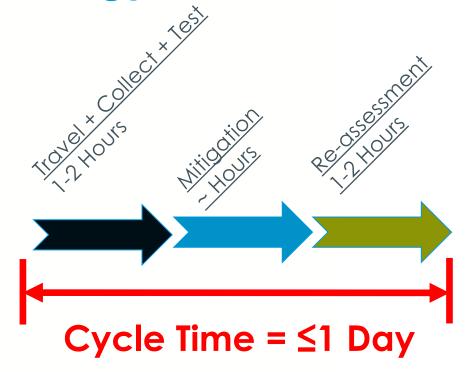
- HPC's incubate for 24-48 hours.
- HPC's detect only ~0.1-1% of bioburden.
- Information is only provided on organisms that can grow...
  - ...in the media used;
  - ...at the temperature provided;
  - ...within the incubation time allowed.
- Regulatory parameters (e.g. Total Coliforms, E.
   Coli) measure a even smaller fraction.
- Many problem microorganisms are missed!






Heterotrophic Plate Count






# Strategy: Traditional Culture Tests



© 2020 LuminUltra Technologies Ltd.

## Strategy: In-field ATP testing



Point-and-shoot strategy can be applied to isolate the root cause and solve problems on-the-spot.

# What are the results of uncontrolled microbial growth?

- Biofilm accumulation
- Elevated disinfectant demand
- Taste & odor, cosmetic issues
- Non-compliance
- Premature infrastructure degradation (i.e. MIC)

© 2020 LuminUltra Technologies Ltd.

Which of these can be managed using compliance tests?



# Limitations of Traditional Microbiological Testing

- None of the problems discussed on the previous slides are traced to a single type of organism – they are caused by the community as a whole.
- Attempts at total microbial content (e.g. HPC) are slow and a poor representation of the total population.
- The tools being used are not appropriate for the objective!

© 2020 LuminUltra Technologies Ltd.

"90-99.9% of the bacteria found in water systems are not culturable in common laboratory media."

Risenfeld, 2004



# What are the costs of uncontrolled microbial growth?

- Clean ≠ Compliant! Significant costs are incurred as a result of general growth.
- Several hours and large volumes of water required for flushing programs. Adds up to >\$122 US/hour to flush.
   Assumptions:
  - Water value = \$2 US/1000 USgal

© 2020 LuminUltra Technologies Ltd.

- Hydrant flow rate = 75 USgpm
- \$1/person/day for boil water advisory (conservative estimate).

  Company Confidential

### **Costs of Line Breaks**

| Location    | Miles of<br>Pipe | Total # of<br>Breaks | Cost to Manage<br>Annual Breaks <sup>1</sup> |
|-------------|------------------|----------------------|----------------------------------------------|
| Phoenix     | 5,400            | 1350                 | \$4,050,000                                  |
| Dallas      | 4,600            | 1150                 | \$3,450,000                                  |
| Kansas City | 1,912            | 478                  | \$1,434,000                                  |
| Macon       | 1,400            | 350                  | \$1,050,000                                  |

Average line break frequency:

23-27 breaks/100 miles of pipe/year (Kirmeyer et al)

Direct costs to repair a break: \$3000

(American Water Works Service Company)



### **Costs of Line Breaks**

| Location       | Miles of<br>Pipe | Total # of<br>Breaks | Cost to Manage<br>Annual Breaks <sup>1</sup> | Potential<br>Savings |
|----------------|------------------|----------------------|----------------------------------------------|----------------------|
| Phoenix        | 5,400            | 1350                 | \$4,050,000                                  | \$405,000            |
| Dallas         | 4,600            | 1150                 | \$3,450,000                                  | \$345,000            |
| Kansas<br>City | 1,912            | 478                  | 478 \$1,434,000 \$1                          |                      |
| Macon          | 1,400            | 350                  | \$1,050,000                                  | \$105,000            |

- Assume 50% of breaks due to corrosion (the balance is due to © 2020 Lumin @ O Pasticuction incidents, etc.)
  - Also (conservatively) assume that enhanced control reduces field service time by 10%.

### As a result...

- People have learned to live without microbiological data.
  - "We don't do micro. That's for the people across town/state lab/etc."
  - "We just keep our chlorine high."
  - "We just look at Total Coliform/E.Coli. We don't really care about other stuff."
- Many are aware of limitations but aren't aware that a solution exists.

### As a result...

- If a problem is detected using traditional microbiological tools, it has been there for at least a couple of days.
- Since the time of sample collection, the problem may (and likely is) worse and spread downstream.
- What would it be worth to you to know about the problem immediately?



### **The Solution**



- *Value Proposition* A rapid, non-specific measure of living microorganisms in water (or any other fluid sample).
- Four main advantages of LuminUltra's tests:
  - 1. Real-time feedback (< 5 minutes)
  - 2. Complete results (100% of species detected).
  - 3. Field-ready
  - 4. Test Kits designed for specific applications
- Decisions can be made on-the-spot, enabling same-shift troubleshooting.

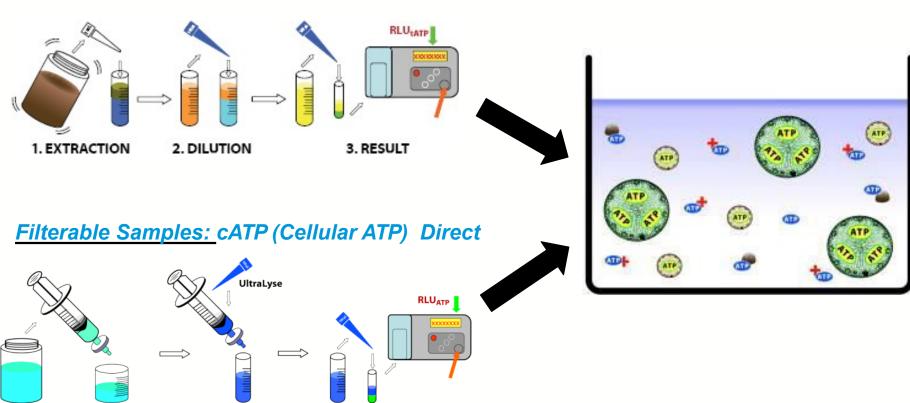


### **PRODUCT OVERVIEW**

### 2<sup>nd</sup> Generation ATP

### "The first line of defence"

- Trusted solution for water-related industries for 15+ years;
- Rapid measure of total bioburden in < 5 minutes using a simple and portable test protocol;
- Facilitates timely risk assessments to identify areas of concern;
- Drives immediate action (i.e. more specific assays and/or adjustments to treatment strategies).






# The Key: Cellular ATP (cATP (Cellular ATP)



### Non-Filterable Samples: cATP (Cellular ATP) = tATP (Total ATP) - dATP (Dissolved ATP)



3. RESULT



1. FILTRATION

2. EXTRACTION



### **Product Offering**



### Luminometer-PhotonMaster

- Powered via USB to laptop or desktop computer
- Application Specific Test Kits
  - Quench-Gone Aqueous (QGA)
  - Quench-Gone Organic Modified (QGO-M)
  - QuenchGone21 Wastewater (QG21W)
  - QuenchGone21 Industrial (QG21I)
  - QuenchGone21 Specialty (QG21S)
  - DSA Test Kit

### LumiCalc Software

- Significant time savings in the organization, analysis, and reporting of data – spend minutes to achieve what took hours with traditional method.
- Get interpretation as results are collected to make faster and better decision.

Company Confider connection to PhotonMaster saves time tabulating results and protects your data











## Hach plus LuminUltra











# (HACH) 6 Test Kits + 1 Equipment Set



Be Right™

- **Purified**
- **Drinking**
- Cooling
- Papermaking
- **Pulping**
- **Wash Waters**











- Fuels
- Metalworking
- Oilfield
- **Polymers**
- **Slurries**
- **Adhesives**







- **Deposits**
- **Biofilm**
- Slimes
- Surfaces





- Wastewater
- **Bioreactors**
- **Effluent**
- **Bioprocessing**

Be Right<sup>™</sup>











### **QGA Test Kit Contents & Storage Conditions**

| Component (LuminUltra P/N)                                                       | Storage      | Shelf<br>Life  |
|----------------------------------------------------------------------------------|--------------|----------------|
| Luminase™ Enzyme & Buffer Vials<br>(Lu-3mL-FD)<br>Luciferase Enzyme Reagent, 3mL | 4 to<br>25°C | 6 to 12<br>mo* |
| UltraCheck ™ 1 Dropper Bottle<br>(UC1-5mL)<br>1 ng ATP/mL Standard, 5mL          | 4 to<br>25°C | 18 mo          |
| UltraLyse <sup>™</sup> 7 Bottle<br>(UL7-125mL)<br>ATP Extraction Reagent, 125mL  | 4 to<br>25°C | 18 mo          |
| UltraLute™ (Dilution) Tube, 9mL<br>(ULu-9mL-50R)<br>ATP Dilution Reagent, 9mL    | 4 to<br>25°C | 18 mo          |
| Quench-Gone Syringe Filters, 25/pk (DIS-SFQG-25)                                 | -            | -              |
| 60mL Syringe, PP/Neoprene, 25/pk (DIS-S60-25)                                    | -            | -              |
| 100 to 1000µL Blue Pipet Tips, 100/rack (DIS-PT1-100R)                           | -            | -              |
| 10 to 200µL Yellow Pipet Tips, 96/rack (DIS-PT01-96R)                            | -            | -              |
| 12x55mm Test Tubes, 50/pk<br>(DIS-CT12-50)                                       | -            | -              |

QGA – Quench-Gone Aqueous. Use for water samples whether fresh or brackish from and HACH

source when microbial control is required.

Company Confidential

Be Right<sup>™</sup>

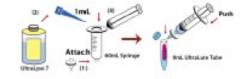
# **QGA Quick-Reference Guide**

### Step 2 - Cellular ATP (cATP™) Analysis

### 2.1 – MEASURE SAMPLE VOLUME

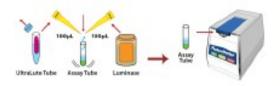
Determine volume and filter sample.

| Sample Type                 | Volume<br>(mL) |
|-----------------------------|----------------|
| Cooling or Process Water    | 10 to 25       |
| Fresh Brackish & Salt Water | 25 to 50       |
| Reclaimed Water, Effluents  | 25 to 50       |
| Drinking and Sanitary Water | 50 to 100      |
| High Purity Water           | > 100          |




### 2.2 – FILTRATION Filter sample.




#### 2.3 - EXTRACTION

Extract ATP from filter & dilute.



#### 2.4 - ASSAY

Measure ATP concentration.



NOTE: If RLU<sub>cATP</sub> ≤ 10 using a PhotonMaster or Lumitester C-110, you are below the low- detection limit

NOTE: If RLU<sub>cATP</sub> ≤ 50 using a PhotonMaster or Lumitester C-110, consider accounting for background (RLU<sub>bg</sub>). See Test Kit Instructions for guidance.











#### QG21W Test Kit Contents & Storage Conditions

| Component (Part Number)                                                                                        | Store At     | Shelf<br>Life  |  |
|----------------------------------------------------------------------------------------------------------------|--------------|----------------|--|
| Luminase™ Enzyme & Buffer Vials<br>(LuW-3mL-FD)<br>Luciferase Enzyme Reagent, 3mL                              | 4 to<br>25°C | 6 to 12<br>mo* |  |
| UltraCheck™ 1 Dropper Bottle<br>(UC1-5mL)<br>1 ng ATP/mL Standard, 5mL                                         | 4 to<br>25°C | 18 mo          |  |
| UltraLyse™ 30 <sup>21</sup> (Extraction) Tube, 2mL<br>(UL30(21)-2mL-50R)<br>tATP Extraction Reagent, 2mL       | 4 to<br>25°C | 18 mo          |  |
| UltraLute™/Resin (Dilution) Tube, 8mL<br>(ULuR-8mL-50R)<br>tATP Dilution Reagent, 8mL                          | 4 to<br>25°C | 18 mo          |  |
| LumiSolve™ (Stabilizer) Tube, 10mL<br>(LS-10mL-50R)<br>dATP Stabilizing Reagent, 10mL                          | 4 to<br>25°C | 18 mo          |  |
| UltraLyse™ 30 <sup>21</sup> (Extraction) Tube, 10mL<br>(UL30(21)-10mL-25R) **<br>tATP Extraction Reagent, 10mL | 4 to<br>25℃  | 18 mo          |  |
| 100 to 1000μL Blue Pipet Tips, 100/rack (DIS-PT1-100R)                                                         | -            | -              |  |
| 100 to 1000µL Wide-Mouth Pipet Tips,<br>100/rack<br>(DIS-PT1WM-100R)                                           | -            | 1              |  |
| 10 to 200µL Yellow Pipet Tips, 96/rack (DIS-PT01-96R)                                                          | -            | -              |  |
| 12x55mm Assay Tubes, 50/pk<br>(DIS-CT12-50)                                                                    | -            | -              |  |
| 2" x 2" 250µm Mesh Squares, 25/pk **<br>(DIS-MESH-25)                                                          | -            | -              |  |
| 1.5" x 1.5" Weigh Boat, 25/pk **<br>(DIS-WD-25)                                                                | -            | -              |  |
| Scissor-Type Forceps, 1/pk**<br>(EQP-FOR)                                                                      | -            | -              |  |

**QG21W** – QuenchGone21 Wastewater. Designed for quantification of biomass in wastewater treatment bioreactors, influents, and effluents. Also used for fermentation.

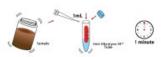
Company Confidential Be Right™

# **QG21W Quick-Reference Guide**

#### Step 1 - UltraCheck™ 1 Calibration

Perform one UltraCheck 1 calibration per day or per each set of samples analyzed.




NOTE: If RLU<sub>ATP1</sub> ≤ 500 using a PhotonMaster or Lumitester C-110, rehydrate a new bottle of Luminase<sup>W</sup> for maximum sensitivity.

#### Step 2 - Total ATP (tATPTM)


Included in QG21W<sup>™</sup> and QG21Wa<sup>™</sup> test kits.

#### 2.1 - EXTRACTION

Add sample to extract ATP.

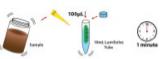


2.2 - DILUTION
Dilute out interferences.



2.3 – ASSAY Measure ATP concentration.




NOTE: If RLU<sub>1ATP</sub> ≤ 10 using a PhotonMaster or Lumitester C-110, you are below the low- detection limit.

#### Step 3 - Dissolved ATP (dATP™)

Included in QG21W<sup>™</sup> and QG21Wa<sup>™</sup> test kits.

#### 3.1 - DILUTION

Add sample to recover ATP.

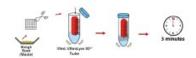


3.2 – ASSAY
Measure ATP concentration.



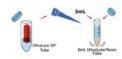
NOTE: If RLU  $_{\rm dATP}$   $\leq$  10 using a PhotonMaster or Lumitester C-110, you are below the low-detection limit.

#### STEP 4a - Floc Bulking ATP (fbATP™)


Included in QG21Wa<sup>™</sup> test kit only.

#### 4a.1 - FILTRATION

Filter sample to separate bulking floc.




4a.2 - EXTRACTION Extract ATP from mesh.



#### 4a.3 - DILUTION

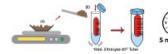
Dilute out interferences.



4a.4 - ASSAY

Measure ATP concentrations.




NOTE: If RLU<sub>fbATP</sub> ≤ 10 using a PhotonMaster or Lumitester C-110, you are below the low-detection limit.

#### STEP 4b - Attached Growth ATP (agATPTM)

Included in QG21Wa<sup>™</sup> test kit only.

#### 4a.1 - EXTRACTION

Extract ATP from sample.



OR



#### 4b.2 - DILUTION

Dilute out interferences.



#### 4b.3 - ASSAY

Measure ATP concentrations.



NOTE: If RLU<sub>agATP</sub> ≤ 10 using a PhotonMaster or Lumitester C-110, you are below the low-detection limit.

### **Municipal Water Management:**

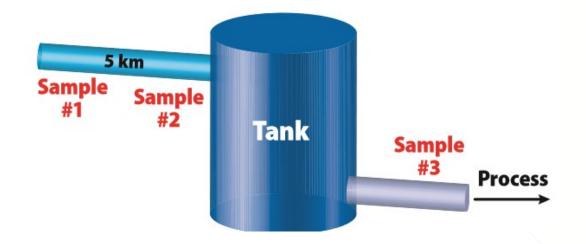
# Actions driven by ATP test results

- Field-deployable test format enables user to trace up the line to find the source of issues;
- Optimize flushing time/water usage;
- Boost disinfectant/burnout;
- Conduct system audits to optimize secondary microbiological monitoring tools to speciate.

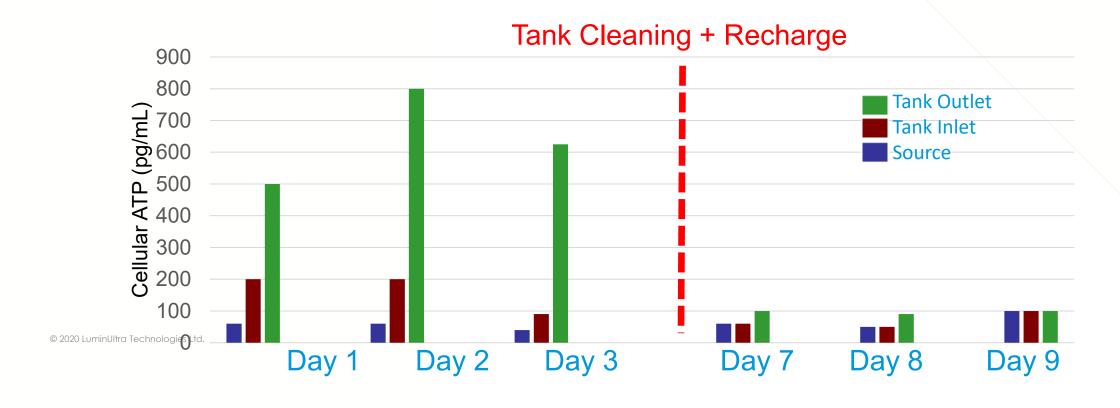


# Focus: Storage Tank Surveillance

• Storage tanks are often the first point at which regrowth becomes a problem.


 Whether it be due to long water age, stagnation, or infiltration, stored water represents a threat to downstream water quality.

### [ATP]outlet > [ATP]inlet?


If ATP leaving the tank is greater than that entering the tank then growth is occurring in the tank.

## Focus: Storage Tank Surveillance

- Water quality issues had been apparent through a water delivery line with the source suspected to be a storage tank on-site.
- Samples were drawn at the source, the tank inlet, and the tank outlet.
- ATP tests were done at each location over a 3-day period.



# Focus: Storage Tank Surveillance



## Focus: Distribution System

- Diagnose water quality issues as biological or not in minutes;
- 2. Trace the line to the source;
- 3. Apply corrective action;
- 4. Validate actions on-the-spot.

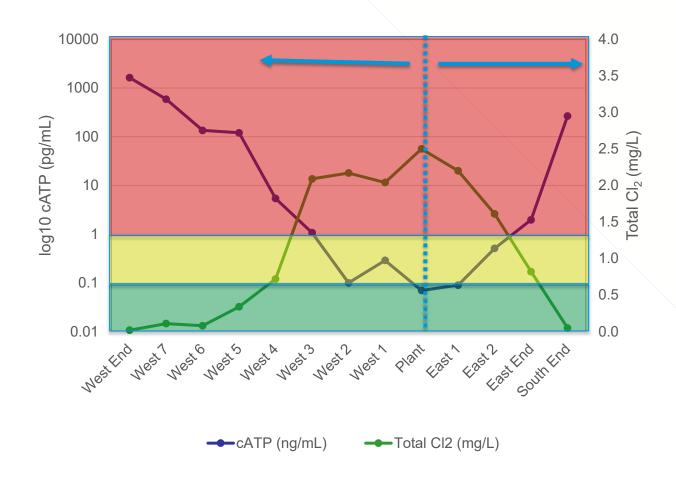
© 2020 LuminUltra Technologies Ltd.



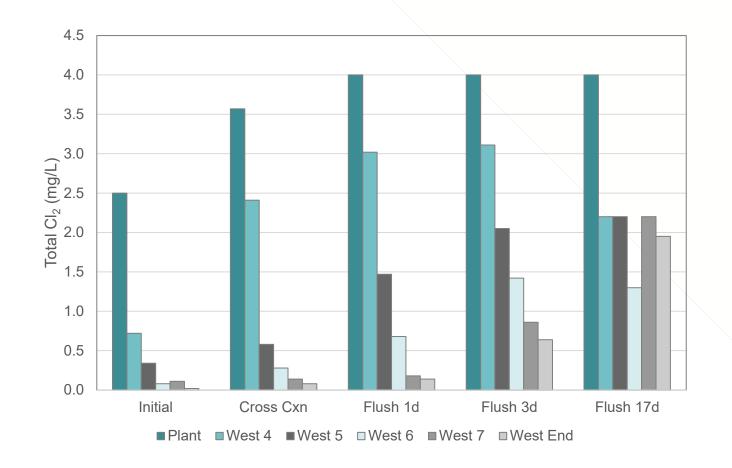
- A utility performed a distribution system audit to compare microbiological contamination levels with total chlorine residual.
- To recap: ATP targets for drinking water systems are as follows:

© 2020 LuminUltra Technologies Ltd.

High Risk: >10pg/mL

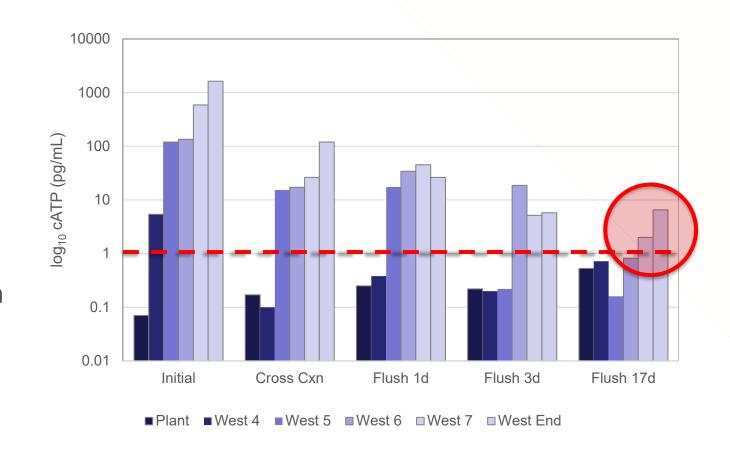

Moderate: 1 < ATP < 10

Low Risk: < 1pg/mL


Company Confidential

- As expected, ATP increased and total chlorine levels decreased with distance from the plant.
- BUT, in some cases ATP results
   persisted at elevated levels even in
   areas of adequately high chlorine.

© 2020 LuminUltra Technologies Ltd.

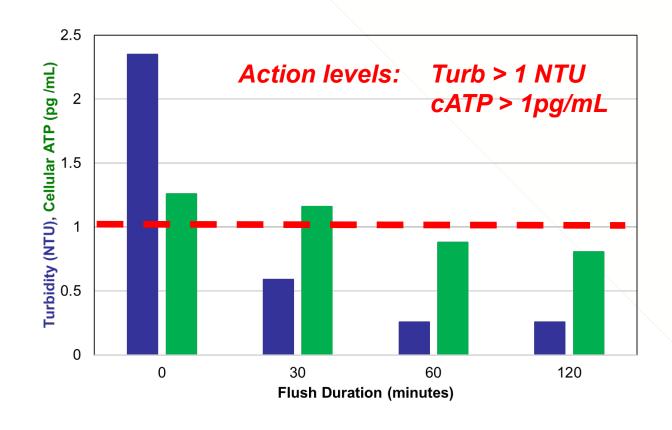



- Chlorine was boosted in addition to a flushing cycle.
- Chlorine residuals increased as expected with the highest levels being nearest to the plant.
- After the flush, same levels of residual Cl were observed at all points.



- Despite the re-establishment of adequately high Chlorine, high ATP was still measured at the far ends of the distribution system.
- Localized focus could be placed in this area, whether it be in the form

   2020 Lumino freadditional flushing or additional root cause analysis.

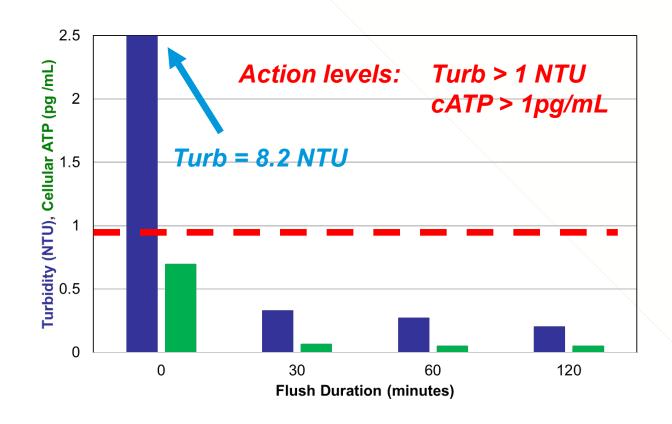



# Case Study: Flushing

ATP levels dropped significantly after only 30 minutes to below the target 1 pg ATP/ml.

Savings: 2 man hours + 45,000 USgal of water.

© 2020 LuminUltra Technologies Ltd.




# Case Study: Flushing

In this case ATP confirmed that the high turbidity was a non-biological issue and flagged the end of the flushing cycle after 30 minutes.

Savings: 3 man hours + 67,500 USgal of water.

© 2020 LuminUltra Technologies Ltd.



## **Focus: Nitrification**

Controlling nitrification requires a delicate balancing act:

 NH<sub>3</sub>/Cl/pH – all a function of what's in the water, difficult to make sure it's all as it should be.

- Nitrifying bacteria cannot be detected using HPCs.
- HPCs detect Denitrifying bacteria, but by that time,
   it's already too late.

# **Summary on ATP Testing**

- ATP technology overcomes the limitations of traditional microbiology by taking microbiological testing into the field and producing results as quickly as other water quality parameters;
- Reveal, isolate and solve water quality problems in a fraction of the time that would otherwise be needed;
- Use results of in-field ATP tests to drive and prioritize additional testing to further characterize water quality.

© 2020 LuminUltra Technologies Ltd.



#### **PRODUCT OVERVIEW**

# GeneCount™ qPCR

#### Isolates specific microbes

- qPCR testing has historically been complex, expensive, and a significant investment that only research labs would pursue.
- GeneCount is very "on brand" with LuminUltra's traditional approach: practical and portable yet refusing to sacrifice accuracy for the sake of simplicity.
- Value Proposition: Test for the specific threats that concern you most without involving a lab, thereby saving significant time and money.
- Expandable platform to include numerous other tests in the future, including infectious diseases in addition to more pathogens and troublesome microbes.

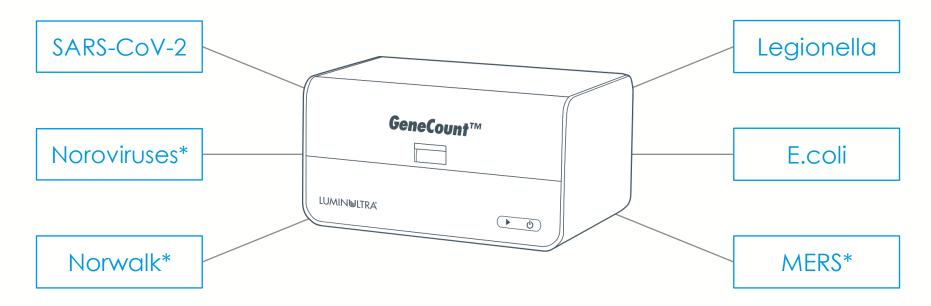


#### PRODUCT OVERVIEW

# GeneCount™ qPCR

#### Additional Assays:

- Total Prokaryote
- Sulfate-Reducing Prokaryote
- Sulfur-Oxidizing Prokaryote
- Methanogens
- Iron Reducing Bacteria
- Total Fungi
- Total E.Coli
- Legionella sp.
- NEW: SARS-CoV-2




10

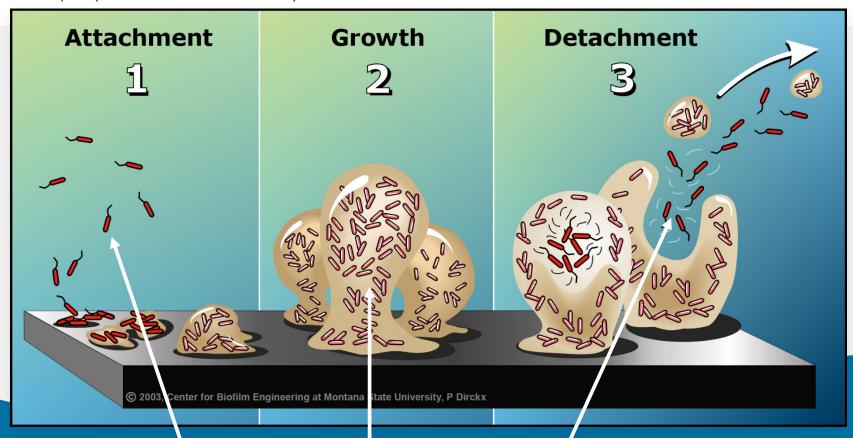
GeneCount™ Q-16

LUMINULTRA

# Having a microbial safety plan is crucial to ongoing risk management



LuminUltra's multifunctional GeneCount line provides both the platform and assays needed for ongoing pathogen defense!




### The EZ Series: online water analysis made easy



# A Dynamic Process – Real Time Monitoring Needed

\* Graph by Montana State University

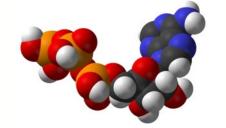


#### The Objectives:

- "Healthy biofilms will release lumps of bacteria once fully grown: sessile bacteria turn planktonic again: this is a risk.
- When Biocides are dosed they will only touch the surface of the biofilm releasing similar lumps of bacteria: risk.
- A clean system can be obtained by: cleaning and monitoring of low concentrations planktonic bacteria.

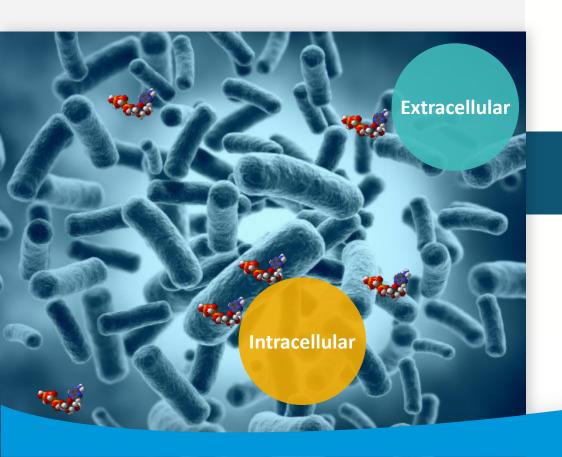
Planktonic / Sessile / Planktonic




Cell dies and ATP is rapidly degraded

ATP serves as a reliable biomarker for living organisms in a sample

ATP can be used as a parameter in high-frequency, automatic, on-line microbial analysis in water


Things to know about measuring ATP

Online options to measure Free ATP, Total ATP and Intracellular ATP





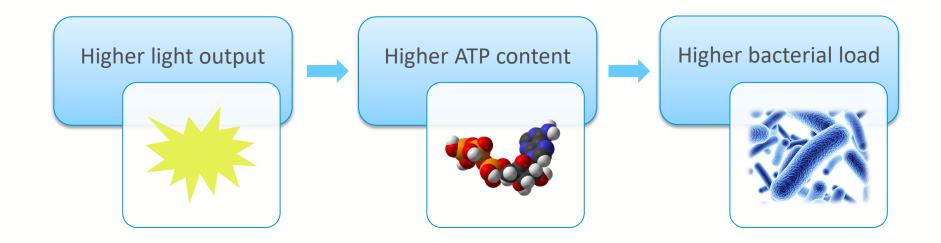
# Proprietary Sample Pretreatment to Detect Living Organisms



# What is the relevance of measuring the different ATP portions?

- Extracellular ATP or free ATP is the portion of ATP released by dead cells
- Total ATP is obtained after lysis of the biomass by sonication of the sample
- Intracellular ATP is the portion of ATP from the metabolically active (living) organisms

#### Intracellular ATP = Total ATP - Extracellular ATP


HACH

Be Right

Bonus Material: Free ATP can be used in reverse osmosis (RO) applications to monitor contaminant removal

#### **ATP** chemiluminescence reaction

ATP assays using luciferin/luciferase reactions allow to assess microbial load in water sources. The ASTM D4012 (Standard Test Method for Adenosine Triphosphate Content of Microorganisms in Water) was developed as a quick and sensitive alternative to plate counting.





#### **EZ7300 Series - General**

#### What?

The first microbiology analyzer using the ATP firefly assay and complying with international standard method **ASTM D4012-81** 

The on-line microbiology analyzer brings operators

- Fast results (few minutes ≈ real-time data)
- Automation
- Analytical performance
- Reliability







# Hach EZ7300 Series ATP Analyzer

The first microbiology analyzer using the ATP firefly assay and complying with international standard method **ASTM D4012-81**.

- Fast results (few minutes ≈ real-time data)
  - 10 minutes can be delayed to 2.5 hours
- Analytical performance, LOD of 0.05 pg/mL
- Up to 8 sample streams possible
- Highly sensitive and stable ATP reagents
- Automation and cleaning
  - Rinsing after each sample.
  - Cleaning with HCl to break down any biofilm.
  - Cleaning with NaOH to hydrolyze remaining bacteria



# **EZ7300 Series - High analytical performance**

- Complete ATP recovery: detection of intracellular, extracellular and total ATP
- Rapid measurement: 7 10 minutes (including lysis)
- No delay between sample take-off and measurement
- Smart features: automatic calibration and 3-step cleaning protocol
- Low limit of detection (LOD): 0.05 pg/mL (0.1 pM) ATP \*
- Extended reagent stability (see further)
- Factory configured, tested and calibrated

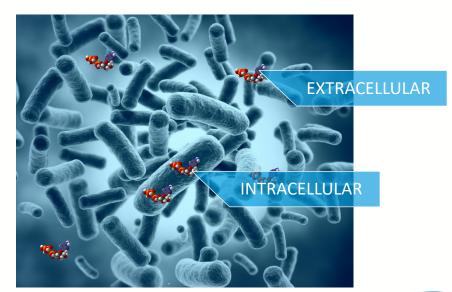


<sup>\* 0.05</sup> pg ~ 50 E. coli sized bacteria

# **EZ7300 Series – Proprietary sample pretreatment**

**Question:** what is one of the main challenges in measuring the microbial load (contamination) in water?

**Answer:** in order to have a clear picture of the microbial load it is important to differentiate ATP portions within living cells from non-living cells


ATP in the water source can be located...

Either inside bacteria or other cells

= intracellular

Or freely in the water surrounding the cells

= extracellular or free ATP





# **EZ7300 Series – Proprietary sample pretreatment**

#### What is the relevance of measuring the different ATP portions?

- Extracellular ATP or free ATP is the portion of ATP released by dead cells
- Total ATP is obtained after lysis of the biomass by sonication of the sample
- Intracellular AP is the portion of ATP from the metabolically active (living) organisms

Or:

Intracellular ATP = Total ATP - Extracellular ATP



## **EZ7300 Series – Proprietary sample pretreatment**

**Solution: EZ Series** proprietary sample pretreatment unit performs a controlled ultrasonic lysis of the sample which disrupts the living cells

- Sampling
- Addition luciferase and luciferin
- 1st light output correlates with free ATP
- Cell lysis with ultrasonic treatment
- Addition luciferase and luciferin
- 2nd light output correlates with total ATP





# Real time monitoring of raw water intake and treated water

#### The objectives:

#### At the Alfred Merritt Smith Water Treatment Facility

- Obtain real-time information to further optimize the ozonation of the raw water coming from Lake Mead.
- Refine and optimize the Chlorine gas disinfection process used on the finished drinking water.





# Saint Paul Regional Water Services' McCarron's Water Treatment Plant

#### Water Use (In Million Gallons)

Average daily - (2016) 38.2

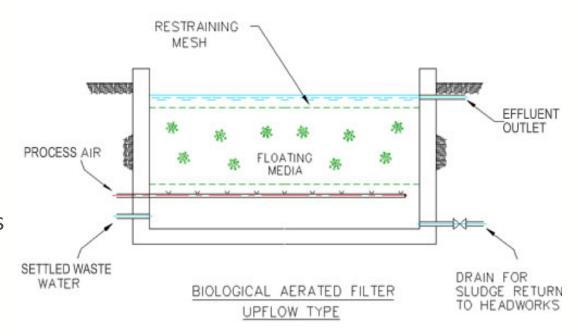
#### **Area Supplied (In Square Miles)**

Saint Paul - 56.2 Suburbs - 66.6

#### **Water Treatment Plant (In Million Gallons)**

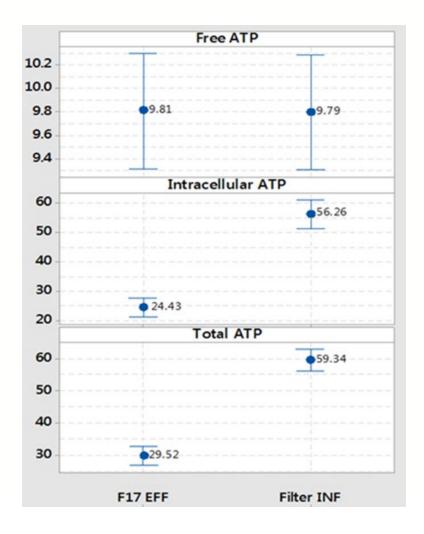
Daily plant capacity – 144 Total treated, finished water - 88

Number of people served - 432,911






# Optimization of a biological filter and plant risk mitigation


#### The objectives:

- Monitor in real time the microbial load of the influent and effluent of their biological filter.
- Determine the efficiency of the biological filter in removing biomass (microbial load)
- Trouble shoot/mitigate risk (corrosion) in other parts of the plant using the grab sample line of the analyzer.





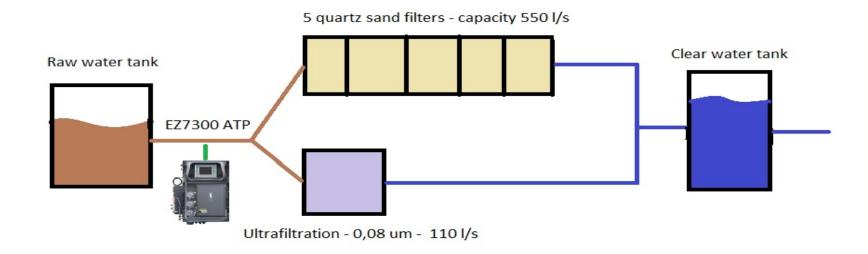
# Field data: drinking water



The graph shown on the right is the statistical summary from analysis between June and September2017 regarding filter influent and effluent of a biological filter.

Filtration process is effective in removing ~57% of influent biomass based on the ATP data.

Data courtesy of Saint Paul Regional Water Services, MN, USA




# Drinking water production company senj, vodovod južni ogranak senj

- Water source for production of drinking water is accumulation from two rivers (Lika and Gacka).
- HE Senj electricity power plant also use this accumulation for electricity production.
   Maintenance plan - 3 times a year.
- Maintenance plan affect on quality of raw water, especially on turbidity and microbiology



#### **Solution**



- In normal condition customer use sand filter
- In case of microbiology excess customer will use ATP analyzer as early alarm and switch purification to ultrafiltration



# THANK YOU FOR YOUR TIME TODAY



