Low Cost Optimization of Final Clarifiers The Value of Knowledge-Based Tools

Sam Jeyanayagam, PhD, P.E, BCEE Senior Associate Malcolm Pirnie Phone: 614-430-2611 Sjeyanayagam@Pirnie.com

OWEA Conference 17 June 2010

Solutions for Life[™]

Presentation Outline

- Background
- Functions of a Clarifier
- Tools for Clarifier Analysis
 - Application of State Point Analysis
- Take Home Messages

Presentation Outline

Background

- Functions of a Clarifier
- Tools for Clarifier Analysis
- Take Home Messages

Clarifier is a Key Component of the Treatment Train

- It often limits the capacity of the entire facility
- Plays a central role in wet weather treatment
- Care should be taken in its design & operation

Clarifier Analysis should be based on a <u>Systems</u> Approach

Important Terminology

- Overflow rate (OFR), Surface overflow rate (SOR)
 - OFR = SOR = Q/A
- Underflow rate (UFR)
 - UFR = Q_{RAS}/A

- Flux: Movement of solids through the clarifier
 - Flux = Mass of solids (lb/d)/A
 - Solids loading rate (lb/d/ft²) = [(Q + Qras)*X*8.34]/A
- State Point: Clarifier operating point
 - Defined in terms of OFR & UFR

Presentation Outline

- Background
 Functions of a Clarifier
 Tools for Clarifier Analysis
- Take Home Messages

The Clarifier Must Perform Two Basic Functions

1. Clarification:

- Solids separation
- Involves a small fraction of the solids inventory
- 2. Thickening
 - Transport & compaction
 - Involves a majority of the solids inventory

A clarifier must perform <u>both</u> functions.

Clarification Function

- Clarification involves two velocities
 - Downward velocity of solids
 - Solids settling velocity (V_s)
 - Upward velocity of water
 - Rise velocity = Overflow rate (OFR) = Q/A
- If OFR > V_s
 - Solids carryover
 - This is <u>clarification failure</u>

Clarification failure means high effl. TSS

Q

V_s

OFR

Thickening Function

- The Concept of limiting flux: Maximum rate at which solids can be conveyed to the bottom of clarifier
- If Solids in > Limiting flux
 - Solids accumulate in clarifier
 - Rising sludge blanket
 - This is <u>thickening failure</u>

- If this continues, sludge will reach close to effluent weir
 - Solids carryover

In Summary

Sludge settleability is the single most important factor impacting clarifier performance

Presentation Outline

- Background
- Functions of a Clarifier
- Tools for Clarifier Analysis
 Application of State Point Analysis
- Take Home Messages

Tools for Analyzing/ Predicting Clarifier Performance

- State Point Analysis
- Daigger-Roper Operating diagram
- Keinath operating charts
- Wilson approach
- Ekama-Marais approach
- Others

State Point Analysis

- Extension of the solids flux theory
- Keinath & Wahlberg
- CRTC protocol

Allows the behavior of the clarifier to be examined in <u>conjunction</u> with the activated sludge process

State Point Analysis Starts with Simple Settling Tests

Settling Velocity

Settling Curve for a given MLSS (X)

→ Run 1 → Run 2

Solids Flux Theory

Good settleability = Greater area under the curve relative to poor settleability

State Point Analysis (SPA)

- Superimpose Clarifier Operating Parameters
 - Overflow rate (OFR=Q/A)
 - Underflow rate (UFR=Q_{ras}/A)
- Rate = Slope

<u>Clarification Failure:</u> Location of the State Point

<u>Thickening Failure:</u> Location of UFR.

Application of SPA

- When clarification or thickening failure occurs:
 - Operator intervenes to correct the situation & minimize the impact on the biological system

If this doesn't happen

- Clarifier responds by self-correcting itself, but this may impact the biological process
- SPA can be used to explain these two eventualities

Application of SPA Diurnal Flow Variation

Application of SPA Wet Weather Flows

Application of SPA SVI Increase

Application of SPA MLSS Increase

Application of SPA MLSS Increase

Clarifier Response:

- Solids washout
- MLSS is reduced until limiting flux
- Stable operation with solids in = solids transport capacity
- But MLSS (SRT) < Target value

Operator Action:

- Increase RAS rate until limiting flux
- Maintain target MLSS
- Avoid thickening failure

Presentation Outline

- Background
- Functions of a Clarifier
- Tools for Clarifier Analysis
- Take Home Messages

Take Home Messages

- Sludge settleability is the single most important factor impacting clarifier performance
- Clarifier design should be based on a systems approach
- SPA and similar tools can be used to improve the design <u>and</u> operation of clarifiers:
 - Use of site-specific sludge settleability data avoid large safety factors
 - Examine several operating scenarios (flow, SVI, MLSS) process optimization
 - Size of aeration basin vs. size of clarifier cost optimization
 - Number of clarifiers in operation
- Clarifiers should not be used for storing sludge
- Minimize sludge blanket depth during normal operation
 - Keep solids in the aeration basin

