

## **CFD Methods for Evaluating Air Entrainment in Drop Structures**

Karthik Ramaswamy, MS CFD Engineer, Flow Science, Inc.

for

John Wendelbo, MSc. Director, Flow Science, Inc.









## Outline

- Drop Structures: Key Design Considerations
- CFD Modeling
  - VOF method (free surface flows)
  - Air entrainment model
- Modeling dropshafts



Approach Channel

Taper

Drop Shaft [drilled shaft]

SHCST

## **Drop Structure Design**

Key Design Objectives

- Dissipate energy from the flow
- *Minimize air entrained and transported into the main tunnel*

## **Considerations**

- General inlet configuration (vortex/plunge)
- System hydraulics, venting and odor control
- Constructability
- Maintenance

Edison, R., Design of a Tangential Vortex Drop Structure Using FLOW-3D, World Users Conference, 2012

**De-aeration Chamber** 

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**



### Components of a Vortex Drop Structure (Image Courtesy: AECOM)



Dropshaft

## **Drop Structure Design**

## Key Design Objectives

- Dissipate energy from the flow
- Minimize air entrained and transported into the main tunnel



Baffles and deflectors in plunge flow drop structures

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**





## **Drop Structure Design**

**Key Design Objectives** 

- Minimize air entrained and transported into the main tunnel
  - Good hydraulic design
  - Sufficient venting
  - Air management inside the system



### Components of a Vortex Drop Structure (Image Courtesy: AECOM)

## Where can 3D CFD modeling help?

Key Design Objectives

✓ Dissipate energy from the flow ✓ Minimize air entrained and transported into the main tunnel

## Considerations

- ✓ General inlet configuration (vortex/plunge)
- ✓ System hydraulics and venting





## FLOVV-3D°\_

### 6/26/2019



## Where is CFD effective?



### **CFD Methods for Evaluating Air Entrainment in Drop Structures**



## **Volume of Fluid (VOF)**

- VOF: Method for tracking the free surface
  - Locate the surface
  - Track the surface as a sharp interface within the mesh
  - Apply a boundary condition to the free surface
- 1 Fluid VOF (voids) vs. 2 Fluid VOF approach
  - Voids are regions of uniform properties that provide a boundary condition at the free surface
  - All governing equations are solved for fluid 2 (computationally more intensive)



https://www.flow3d.com/resources/cfd-101/modeling-techniques/vof-whats-in-a-name/





## **VOF methods: Drop Structure**

| entrained air volume fraction<br>0.000 0.125 0.250 0.375 0.500 |  |
|----------------------------------------------------------------|--|

1-fluid VOF model of a tangential dropshaft

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**





## **VOF methods: Drop Structure**



2-fluid VOF model of a tangential dropshaft

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**





## Air entrainment







## FLOVV-3D°.

## Air entrainment





## FLOVV-3D°\_\_\_

## Air entrainment



Non-Aerated Flow Region Growing Turbulent **Boundary Layer Inception Point** retored Ion Rec

Localized Entrainment

**Turbulent Free Surface Entrainment** 

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**





## FLOVV-3D°\_\_\_

## Air entrainment





### Localized Entrainment

**Turbulent Free Surface Entrainment** 

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

### 6/26/2019





## Air entrainment model



 $\forall$ , Volume of air  $C_{air}$ , Entrainment rate coefficient  $A_s$ , Surface area of fluid  $\rho$ , Fluid density k, Turbulent kinetic energy  $g_n$ , Gravity normal to surface  $L_t$ , Turbulent length scale  $\sigma$ , Surface tension coefficient



### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

# e: Resisting Force: Surface Tension $-\frac{2\sigma}{L_t}$





## FLOVV-3D°.

## Air entrainment









## Air entrainment



### **CFD Methods for Evaluating Air Entrainment in Drop Structures**



### 6/26/2019



## Air entrainment – scalar treatment

Physical representation



*FLOW-3D* numerical representation



Air concentration + 

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

| ▼ |
|---|
|   |
|   |
|   |
|   |



6/26/2019



## Air entrainment with drift-flux

### Two-phase flow: liquid and gas





### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

### Entrained air volume fraction

0.25

0.19

0.13

0.06

0.00





## **Air entrainment – validations**



### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

### 6/26/2019



## **Air entrainment – validations**



### **CFD Methods for Evaluating Air Entrainment in Drop Structures**



## Air entrainment – plunging flow

- Plunging jet in cross stream
- Factor in:
  - Pre-existing entrained air in the flow / development of air entrainment within jet before impact
  - Bubble size distribution and evolution
  - Penetration depth



FLOVV-3D°.





## **Air entrainment in Closed Conduits**

Adiabatic bubble model: allows void regions to pressurize/depressurize



Without adiabatic model + air entrainment

With adiabatic model + air entrainment

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

### 6/26/2019

## FLOVV-3D°\_ **Case Study: Air entrainment in Closed Conduits**



- 12'-9" interceptor
- Pump station two incidents when pump 1 was shut down



Water elevation at outlet

Michalski, J., and Wendelbo, J., "Utilizing CFD Methods as a Forensic Tool in Pipeline Systems to Assess Air/Water Transient Issues", WEFTEC 2018.

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**









## FLOVV-3D°. **Case Study: Air entrainment in Closed Conduits**



## Simple weir flow case with adiabatic bubble model on



## Normal operation with all three pumps running

## Flow condition Q1 = 100cfs, Q2 = 150cfs, Q3 = 150cfs – vented flow

Michalski, J., and Wendelbo, J., "Utilizing CFD Methods as a Forensic Tool in Pipeline Systems to Assess Air/Water Transient Issues", WEFTEC 2018.

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**





### 6/26/2019

## FLOV-3D°. **Case Study: Air entrainment in Closed Conduits**



Flow condition Q1 = 100cfs, Q2 = 150cfs, Q3 = 150cfs – vented flow Normal operation with all three pumps running – Tailwater elevation determine by flow (no back pressure)

Michalski, J., and Wendelbo, J., "Utilizing CFD Methods as a Forensic Tool in Pipeline Systems to Assess Air/Water Transient Issues", WEFTEC 2018.

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**







## FLOV-3D°. **Case Study: Air entrainment in Closed Conduits**



Flow condition Q1 = 0 cfs, Q2 = 150cfs, Q3 = 150cfs – vented flow Normal operation with all three pumps running – Tailwater elevation determine by flow (no back pressure)

Michalski, J., and Wendelbo, J., "Utilizing CFD Methods as a Forensic Tool in Pipeline Systems to Assess Air/Water Transient Issues", WEFTEC 2018.

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**







## FLOV-3D° **Case Study: Air entrainment in Closed Conduits**



Flow condition Q1 = 150 cfs, Q2 = 150cfs, Q3 = 0 cfs – vented flow Normal operation with all three pumps running – Tailwater elevation determine by flow (no back pressure)

Michalski, J., and Wendelbo, J., "Utilizing CFD Methods as a Forensic Tool in Pipeline Systems to Assess Air/Water Transient Issues", WEFTEC 2018.

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**







## FLOV-3D°. **Case Study: Air entrainment in Closed Conduits**

- Expected behaviors are reproduced
- Assumptions on modeled physics are sound
  - Siphon and air entrainment physical assumptions make sense (as is well known for self priming siphons)
- Demonstrates how CFD analysis can be used as a forensic tool



## Pressure equalization: placement of two-way valves in the system

Michalski, J., and Wendelbo, J., "Utilizing CFD Methods as a Forensic Tool in Pipeline Systems to Assess Air/Water Transient Issues", WEFTEC 2018.

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**







SHAFT CLEVELAND DVT-1 Superior Ave EAST Doan CLEVELAND **Mayfield Ro** SHAFT MLK-2 Ches OUniver ter Avelid AVGHAFT Gircle MLK-1 CLEVELAND HEIGHTS SHAFT Doan Baldwin DVT-Brook Water SHAFT WCT-2 SHAFT NCT-3 WCT SHAFT SITE CITY BOUNDAE



FLOV-3D°

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

## **Regional Sewer District**

### 6/26/2019





FLOV-3D°.



### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

### Dry weather drop pipe

Weir for dry weather flow

Elbow to increase capacity

Ventilated drop below inlet

View/ventilation ports

Chamfers and flow channels

## Northeast Ohio Regional Sewer District

### 6/26/2019



FLOVV-3D°.

### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

### 6/26/2019

- Reproduce geometry in CAD
- CAD available for full scale structure only
  - Slight differences in configurations:
    - Weir height difference
    - Modification of entry flow location
    - Elbow on dry weather pipe
- Apply correct Boundary Conditions
- Flow rates
- Free discharge outflow



FLOV-3D°\_







### **Northeast Ohio Regional Sewer District**

### 6/26/2019

## FLOVV-3D°. **Case Study: NEORSD Baffle Dropshaft**





## Straight hydraulics: LES turbulence





### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

## Northeast Ohio Regional Sewer District

### 6/26/2019





FLOVV-3D°\_

## Air entrainment model turned on





### **CFD Methods for Evaluating Air Entrainment in Drop Structures**

## Northeast Ohio Regional Sewer District

### 6/26/2019



## Summary / Air Entrainment in Dropshafts Key Modeling Principles

- It all starts with good CAD
- Start simple, then sequentially add complexity
- Start with straight hydraulics
  - Viscosity, body forces, turbulence
  - Mesh sensitivity analyses usually 10 cells across diameter
- Add complexity once hydraulics are in place!
  - Air Entrainment and transport
  - Bulking effects
  - Sediment transport

### 6/26/2019

## FLOVV-3D°

## **Summary / Key takeaways for modeling dropshafts**

- Air entrainment CFD models can be used to guide dropshaft design, qualitatively at the very least
  - More work to be done!
- *Key physics* of system hydraulics coupled with air entrainment can be captured
- Appropriate level of complexity important
- While using the air entrainment model:
  - Sensitivity to turbulence modeling, grid size
  - Always good to calibrate against baseline physical model data
- Can be a valuable tool to explore the design/parameter space

6/26/2019



## Thank you!

## Questions?



© Flow Science, Inc. All rights reserved. *FLOW-3D* and **TruVOF** are registered trademarks in the USA and other countries.