

APPLICATION OF REAL-TIME WEATHER FORECAST IN COLLECTION SYSTEM OPERATION

Hazem Gheith, Qiuli Julie Lu and Tiantian Xiang

OWEA Annual Conference 2019 Huron, OH

Hazem Gheith, Ph.D., P.E. Qiuli Julie Lu, Ph.D., P.E. Tiantian Xiang, Ph.D., EIT

Agenda

- Columbus Collection System
- OARS Tunnel
- Collection System Operation
- Conclusion and Next Steps

City of Columbus Collection System

- 432,000 Acres
- 24 Contract Service Areas
- One Deep Tunnel
- Two Storm Tanks
 - Whittier St
 - Alum Creek
- Two WWTPs
 - Jackson Pike
 - Southerly
- One CEPT
 - In service end 2019

City of Columbus Current Challenges

- 29 CSOs
- 69 SSOs
- Basement backup complaint areas
- High population growth

Wet Weather Management Plan

Background/Timeline

WWTP Improvement

OARS Construction

Blueprint Columbus

Comprehensive I/I Reduction program from public sewers and private properties

OARS in Service - 2017

Agenda

- Columbus Collection System
- OARS Tunnel
- Collection System Operation
- Conclusion and Next Steps

OARS Extent

OARS Tunnel Information

- 4.4 miles of 20' Diameter Tunnel, 64 MG Storage Capacity
- 180' Invert Depth
- 6 Shafts 4 receive flow with special drop shaft structures
- 1 CSO at downstream end of the tunnel
- Dewatering Pumps
- If treatment capacity is available, tunnel can also work as a siphon to convey flow back to the system during large events

Source: https://www.columbus.gov/utilities/projects/OARS-Deep-Sewer-Tunnel/

OARS Tunnel - Level of Service

- Mitigate 10 downtown CSOs points up to 10-year LOS
- Reduce 2 billion gallons of CSOs at Whittier St Storm Tanks during typical year storm (2005 condition)
- Limit CSO overflow to 4 activations (typical year) at OARS downstream end

Agenda

- Columbus Collection System
- OARS Tunnel
- Collection System Operation
 - > Operation Controls
 - OARS Weir Gates RTC
 - Rainfall Forecast Operation
- Conclusion and Next Steps

ARCADIS Design & Consultancy for natural and huit assets

Operation Controls

Key Control Structures:

- OARS Weir Gates (static)
- WSST Gates
- OARS Dewatering Pumps
- OARS West Gates
- Scioto Main Relief Weir
- Big Walnut/BWARI Gates
- CEPT (2019)

Collection System Operation Matrix

WSST Reg Gates	SMR Weir	ODS Gate	OARS Pumps	FDS Gate	Five
Protect OSIS MHs at Berliner, avoid SSO at DSR083 and avoid bypass at Southerly	Maintain JP wet well at 14' after FDS reaches 689 or IJC reaches 671	Control OARS flow to avoid bypass at JP and Southerly and avoid flow backup into OARS	Dewater OARS during and after the storm	Avoid bypass at JP	Control Structures
Open	Setting = 1	Closed	Off	Closed	
Close WSST Gates if IJC Head >= 678; If IJC Head is between 673.5 and 678, modulate to maintain DSR 083	If IJC Head >= 671, maintain FDS Head at 691.5	Close ODS gates if IJC Head >= 678	Turn Pumps off when IJC Head > 678 Turn Pumps on when IJC Head <= 677.5		
Head at 696; If IJC Head is between 669.5 and 673.5, modulate to maintain DSR 083 Head at 700; If IJC Head < 669.5, modulate to maintain DSR 083 Head at 702					
	If FDS Head ≻= 689, maintain FDS Head at 691.5	Close ODS gates if FDS Head >= 693.3	Turn Pumps off when FDS Head > 693.3 Turn Pumps on when FDS Head <= 692	One FDS gate 50% open if FDS Head >= 694.3 Priority 1	
		Open ODS gate at ODS Head 692, close at ODS Head 691.6; When open, initially open 5% and then open up further if ODS Head continues to build	Tum Pumps on when ODS Head between 533.6 and 692.5	Open one FDS gate 5% if ODS Head > 580, and IJC Head < 678	
	WSST Reg Gates Protect OSIS MHs at Berliner, avoid SSO at DSR083 and avoid bypass at Southerly Open Close WSST Gates if JJC Head >= 678; If IJC Head is between 673.5 and 678, modulate to maintain DSR 083 Head at 696; If IJC Head is between 669.5 and 673.5, modulate to maintain DSR 083 Head at 700; If IJC Head < 669.5, modulate to maintain DSR 083 Head at 702	WSST Reg Gates SMR Weir Protect OSIS MHs at Berliner, avoid SSO at DSR083 and avoid bypass at Southerly Maintain JP wet well at 14' after FDS reaches 689 or IJC reaches 689 or IJC Open Setting = 1 Close WSST Gates if IJC Head >= 678; modulate to maintain DSR 083 Head at 696; ff IJC Head is between 69.5 and 673.5, modulate to maintain DSR 083 Head at 700; If IJC Head < 669.5, modulate to maintain DSR 083 Head at 702 If IJC Head >= 671, maintain FDS Head at 691.5 If FDS Head >= 689, maintain FDS Head at 691.5 If FDS Head >= 689, maintain FDS Head at 691.5	WSST Reg Gates SMR Weir ODS Gate Protect OSIS MHs at Berliner, avoid SSO at DSR083 and avoid bypass at SO at DSR083 and avoid bypass at Southerly Maintain JP wet well at 14' after FDS reaches 689 or IJC reaches 671 Control OARS flow to avoid bypass at JP and Southerly and avoid flow backup into OARS Open Setting = 1 Closed Close WSST Gates if IJC Head >= 678; If IJC Head is between 673.5 and 678, modulate to maintain DSR 083 Head at 696; If IJC Head is between 669.5, modulate to maintain DSR 083 Head at 702; If IJC Head is If IJC Head is 691.5 Close ODS gates if IJC Head >= 678 DSR 083 Head at 702; Head at 702; If FDS Head >= 689, maintain FDS Head at 691.5; Close ODS gates if FDS Head >= 693.3 Close ODS gates if JDC Head (591.5; When open, initially open 5% and then open up further if ODS Head continues to build Open ODS gate at ODS Head 692, close at ODS Head 691.6; When open up further if ODS Head continues to build	WSST Reg Gates SMR Weir ODS Gate OARS Pumps Protect OSIS MHs at Berliner, avoid SSO at DSR083 and avoid bypass at SSO at DSR083 and avoid bypass at SO at DSR083 and avoid bypass at SO at DSR083 and avoid bypass at SO at DSR083 and avoid bypass at PDS reaches 689 or UC reaches 671 Control OARS flow to avoid bypass at JP and Southeriy and avoid flow backup into OARS Dewater OARS during and after the storm Open Setting = 1 Closed Off Close WSST Gates if UC Head >= 678; if UC Head is between 673.5 and 676, modulate to maintain DSR 083 Head at 700; if UC Head >= 677.5 If UC Head >= 671, maintain FDS Head at 691.5 Close ODS gates if UC Head >= 677.5 Tum Pumps off when UC Head >= 677.5 DSR 083 Head at 700; if UC Head >= 669.5, modulate to maintain DSR 083 Head at 700; if UC Head >= 669.5, modulate to maintain FDS Head at 691.5 Close ODS gates if FDS Head >= 693.3 Tum Pumps off when FDS Head >= 693.3 If FDS Head >= 689, maintain FDS Head at 691.5 Close ODS gates if FDS Head >= 693.3 Tum Pumps on when FDS Head >= 692 If FDS Head >= 689, maintain FDS Head at 691.5 Open ODS gate at ODS Head 692.5 Tum Pumps on when ODS Head 692.5	WSST Reg Cates SMR Weir ODS Gate OARS Pumps FDS Gate Protect OSIS MHs at Berliner, avoid SSO at DSR083 and avoid bypass at Southerly Maintain JP wet well at 14 after FDS reaches 689 or L/C reaches 680 or L/C reaches 680 or L/C reaches 671 Control OARS flow to avoid bypass at JP and Southerly and avoid flow backup into OARS Dewater OARS during and after the storm Avoid bypass at JP Open Setting = 1 Closed Off Closed Closed Off Closed Closed Off Closed Closed Closed Off Closed Closed Start Pumps off when L/C Head > Ed71, maintain FDS Head at 691.5 Close ODS gates if L/C Head >= 677.5 Turn Pumps off when L/C Head > Ed73, modulate to maintain DSR 063 Head at 700, if L/C Head = 508, maintain FDS Head >= 689, maintain Seg2 Turn Pumps off when FDS Head >= 892 One FDS gate 5% if ODS Head 258, and 92.5 One FDS gate 5% if ODS Head > 600, and L/C Head > 678

System Performance Metric Sheet

20 Year Model Simulation

Number of Overflow Activations Overflow Volume Overflow Duration

SSOs

											_	_	_	_	_	_	_	_						_					_											_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_					_	_
Contraction (Contraction)						14	or partials	0581	Party by	Refe	west			_	_		T	_		- Anno	print i	61a - I	1.00	riten	_		_	_	_	Rist pr	e d 16	in - Be	-thenas	Pana				Sarp.	100	. 16	ike p		- 744	- print	001 5	and my	iin fw	and the				_	_		_	Films y	ABORT DO	81 - O	ad same	100 C	_		_			PR DSD
Description	058 300 (Meat 1950)			(and second little second	COLUMN (MARKED & MUCH	(Upper 1400) (100 High	(mart from) and area	COLOR PROMI INTERNET	DIST (Meet Links)	DATE AND INVESTIGATION	(HALL PRACE) ARE ADD	OWNER THEY ARE ADDRESS	000 347 (Meet 1990)	DIA SIS (Wheek 1960)	058 340 (West 1950)	100 100 (Meet 1990)	the sty (billion is when)		cost and (without subtracy	cole zele (willer traitur)	ttist 179 (Miller Kelturi)	tate still (willow traiture)	218 210 (Miles Gallari)	CORE TATA (Million & oftant)	and the second se	Contrast descent date when	DIA 201 (Miller Celtury)	DER 200 (Barthrow)	DIA 201 (Rethrand	BSR 211 (Berthman)	DIA 307 (Services)	Dia 200 (Berthmen)	Dia 200 (Barthman)	ISIA 200 (Berthman)	bit 110 (Barthread)			NOTIO AVEL I DEL NEL	DIR ZHI (TANY DILIM	NAME (1444 DATE (Notatio Averal I sea and	(DWAW) WIN WID	Date SCO (NAME)	CHANNEL HORE AND	Creation 1 and 1 and	CINNED AND IN AND	THE R. LANSING			frankes () and a loss	lasto i estrato	INVESTIGATION	DEALED (CVM)	mie miz (DVM)	(MAR) BAR (CAM)	DIA NUC (DVM)	TO A REAL PARTY OF A REAL	(MAG) 211 MIG	and real procession	International Internationa International International Int	101 MB 101M1	Organization (SOC MID	DEN 325 (Wellwind)	(Handreich) (Hendreich)	DEA 329 (Welfwind)	1514 364 (Plum Ridge)
Level of Service	301		er 2	or 1 1	or 1	07 2	m 3	11 1	m 3	181	107	187	107	1011	201	20	1 2	1 1	07	201	307	307	107	11	r 1	n 1	arr I	187	urr.	187	107	107	20	20	1 20		a 1	101	107	107	187	107	1.85	1.10	r 18	r 10	1 2	w 2	r 1	17 3	(r)	100	201	307	101	107	181	1.0	1 1	m 1	187	187	187	207	207	207
20% Total Overflow Volume (MG)					64						0.001	0.01	0.05		0.07	00																												0.0	5				4						0.01									0.07	0.01	0.02
20% Total Overflow Duration (Hrs)		Т		1	75						1.25	1.5	2		2	2.2	4	T																										7				6	3						0.75					T				3.25	1.75	1.75
20) Total Number of Activations					2						1	1	1		1	1	T	T																										2											1				T	T				1		1
30V LOS(in yeard)				1	2.5						48.Z	55.2	55.2		55.7	1 55/	2											- 1																12	5			12	3						55.2						- 1			55.2	55.2	55.2
30yr LOS Target Volume (MG)	Me	t 14	let N	kr h	lac I	Arc N	lat: N	lat: N	Ner: N	Asc 1	Met /	Met	Met	Met	Mer	a Me	4 M	11 N	her 1	Mac	Met	Max	Me	t Me	s M	int N	Ner: 1	Met	Met	Met	Met	Me	t Me	: Me	E M	ic M	er: N	Arc 1	Ver.	Mac	Mat	Met	Me	t Me	n 14	it Me	11 M	at M	et N	kt k	lec 1	Acc. 1	Met	Met	Mat	Mat	Max	c Me	6 M	in N	Viet	Met	Met	Met	Met	Met
30yr LOS Target Peak Now (MGD)	Me	t M	let M	let N	ler 1	let N	let N	let N	Net: N	Art I	Met	Met	Met	Met	Mer	A Mer	4 14	at 11	Act 1	Met	Met	Met	Me	t Me	8 M	et A	Act. 1	Met	Met	Met	Met	Me	t Me	t Me	t M	tt M	et N	Act: 1	Vet	Met	Met	Met	Me	: M	1 14	t Me	1 M	et M	et N	et N	ket 1	Act	Mer	Mer	Met	Met	Mer	t Me	5 M	Act 1	Vet	Met	Met	Met	Met	Met

Agenda

- Columbus Collection System
- OARS Tunnel
- Collection System Operation
 - Operation Controls
 - OARS Weir Gates RTC
 - Rainfall Forecast Operation
- Conclusion and Next Steps

Real Time Control – OARS Weir Gates

Modulate the weir gates

- Convey first flush via surface sewers for treatment
- Save tunnel storage for the peak flow duration
- Avoid CSO activation at 10 downtown regulators

OARS Weir Gates Setting – RTC vs Static

Averages Annual

(from 20Y Simulation Results)

OARS Fill / Dewater (MG)	OSIS-S6	OSIS-S5	OSIS-S4	Total Inflow	OARS Pumps
Static Setting	95	73	600	768	555
RTC	90	438	212	750	524

Overflow/CEPT (MG)	OARS OF	SWWTP Bypass	CEPT
Static Setting	206	43	245
RTC	204	41	245

Activation Frequancy	OARS OF	SWWTP Bypass	CEPT
Static Setting	2.20	1.60	4.10
RTC	2.15	1.55	4.15

Static weirs setting performs as good as a comprehensive weir gates modulation program

Agenda

- Columbus Collection System
- OARS Tunnel
- Collection System Operation
 - Operation Controls
 - OARS Weir Gates RTC
 - Rainfall Forecast Operation
- Conclusion and Next Steps

OARS Tunnel Operation Modes

Storage Mode

- Dewater <u>after</u> the storm
- Start dewatering when flow at WWTPs has been less than treatment capacity for 30 minutes

Conveyance Mode

- Dewater <u>during</u> the storm
 - Use dewater pumps as the tunnel is filling
 - Switch to a siphon mode when tunnel is full

Storage vs Conveyance Operation Modes

Averages Annual

(from 20Y Simulation Results)

Operation Mode	OARS Overflow (MG)	Gravity Bypass (MG)	CEPT (MG)
Storage	317	26	98
Conveyance	292	26	104

Activation Frequancy	# OARS Overflow	Gravity Bypass	CEPT
Storage	3.2	1	3
Conveyance	3	1	4

Conveyance mode could reduce OARS overflow by sending more water to CEPT

OARS Tunnel Operation Improvement

Can we use rainfall forecast to switch between operation modes?

- Is there a storm threshold above which OARS is expected to overflow?
- What is the condition during the back-to-back storms?
- What are the pros and cons for different OARS dewatering strategies?

OARS Inflow

- 20Y Simulation Results
- Tunnel is expected to be activated 801 times in 20 years
- Tunnel storage capacity is 63.8 MG (123 times tunnel is filled)

Number of events the tunnel is filled with volume range

Storm range Filling OARS

- Tunnel fills when rainfall > 1.8 inches in 24 hours (31 events in 20 years)
- Of the remaining 770 events, tunnel was filled 93 times (12%)

Storms Causing OARS Overflow

31 events of those filled the tunnel, rainfall was > 1.8 inches (in 20 years)

24-hr Rainfall	# OARS Filling	# OARS Overflow	
≥1.8 in	31	29	Use conveyance mode
0.5 - 1.8 in	87	31	If OARS fills, switch to conveyance
<0.5 in	5	0	Stay storage mode

Operation Based on Real-Time Rainfall Forecast

Rainfall Forecast Source

National Weather Service Ohio River Forecast Center

Example of Improvements

Event of August 29, 2013 (Rank 1 Event for 24-hr Rainfall)

Example of Improvements

Agenda

- Columbus Collection System
- OARS Tunnel
- Operation Controls
- Rainfall Forecast and RTC
- Conclusion and Next Steps

Conclusion

Operation Mode	Pros	Cons
Storage	Easy Operation PlanLess Stress on WWTPs	 Under usage of available treatment at start if events Large overflow volume could have been reduced
Conveyance (no rainfall forecast)	 Keep tunnel storage available for the high peak period of the runoff 	Stressing the WWTPsIncreased potential for bypass
Conveyance with Rainfall Forecast	 Avoid stressing the WWTPs as possible Allows time for operators to prepare for high flow conditions 	 Change operation mode during the storm Potential need to accelerate dewatering to avoid back-to- back storms condition

Next Steps: Summer vs Winter Storms

Summer Storms

- Sharp peak intensities
- Isolated specially distribution cells

Winter Storms

- Low intensity, large volume
- Extends over the entire City

Next Steps: Summer vs Winter Storms Summer (June-Sept) Rainfall Trend

Next Steps: Summer vs Winter Storms Winter (Dec-Jan) Rainfall Trend

Next Steps: OARS Surge Condition

Delaying water in the tunnel could increase surge and air entrapment conditions in the tunnel due to the back-toback storms

Wang, J., and Vasconcelos, J., 2018, Manhole Cover Displacement Caused by the Release of Entrapped Air Pockets. Journal of Water Management Modeling, DOI: 10.14796/JWMM.C444

Next Steps: High River Operation

During high storms and high river conditions OARS excessive flow would not be able to overflow to the river, causing backup into the collection system

Emptying the tunnel at earlier stage could reduce the need to overflow at OARS and would reduce the backup negative impact

Next Steps: Lower Olentangy Tunnel

City of Columbus is extending OARS with a 12 ft tunnel (LOT) to reduce CSO activation from 7 CSO points at upstream

LOT will be connected to OARS through a sluice gate and drop shaft

LOT can add additional storage that could improve the system operation and reduce OARS overflow

