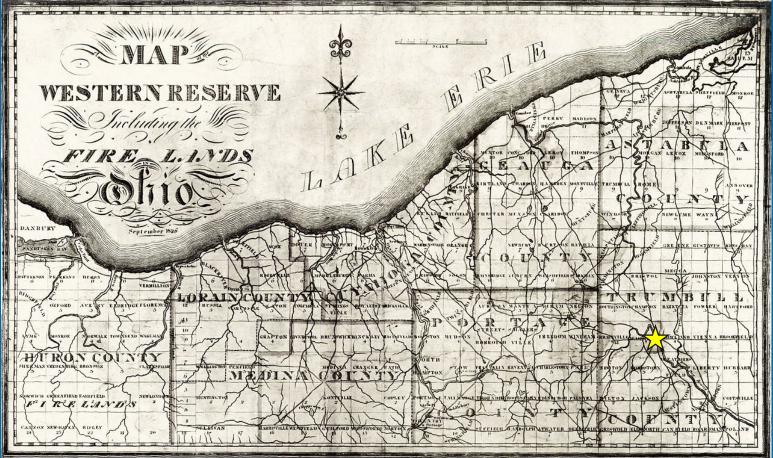
A Comprehensive Sanitary Sewer Study of the City of Warren

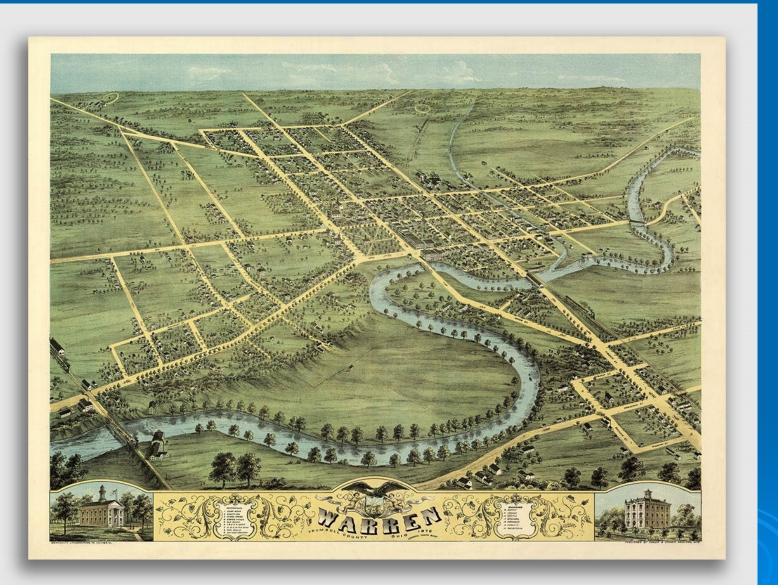


Presenters: Ed Haller, City of Warren Louis Burnoski, AECOM Tanner Adair, AECOM

Warren: Capital of the Western Reserve

REFERENCE'S.

ADDALLA (LAW)


RRFN

the city of

We Western Reserver, as interest in the nexts cast quarter of the state between Sin Core on the nexts. Prinsplania Cast of Restings 120 miles from Cast Filest and upon an average 32 from north to south The area is ust 3000000 granss, a body of 50000 of acres is streken of from the west end of the tract, and quarted by the state of of Connecticut, as a denation to certain sufferent by fire coasionat by the English ituring the Protectionary Var the manner by which the state of Connecticut is a denation to certain sufferent by the coasion to the Content of the tract, and quarted by the state of of the land in question, was the following. They Charlest of Connecticut providing the complete of his brother kings, of quanting distant and foring regions to his subjects opinited of the land in question, was the following. They Charlest of Connecticut providing the complete of his brotherkings of quanting distant and foring regions to his subjects opinited to the then colony of Connecticut in 16/12, a charter right to all lands included within certain specified trands. But as the geographical knowledge of Europeans concerning to merica was then very limited and confused, patients for lands of the interferent with each other - . Offer the United States becami an Independent . Waite of connecticut in the State of Connecticut which was finally conformed by the United States religies their claims to the 3000000 of acres describe The United States however covered to themeeles the right of production. They then united this tract to the Deriver your Matter of Chie The United States however covered to themeeles the right of production. They then united this tract to the Deriver your Matter of Chie

Warren: 1870

Warren Sewer History

>1st Sewers: Late 1800's Goal: Get it ALL to the River >1st WWTP 1962 Goal: Get Most of it to the Plant Sewer Separation 1990's – 2006 Closed all CSO's

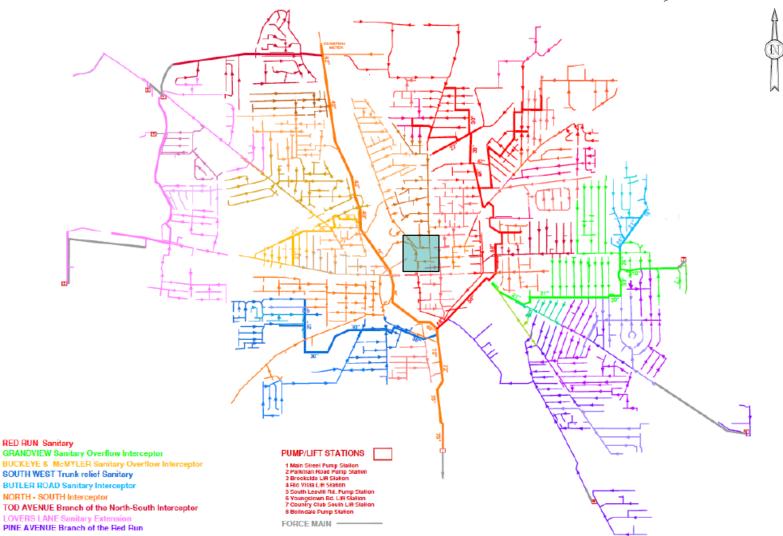
Catalyst Event

Summer 2014: BIG Rain Event
Many Warren Buildings: Basement Flooding
EPA Permitted 1 SSO to be Reopened
Hired AECOM: Downtown Sewer Study

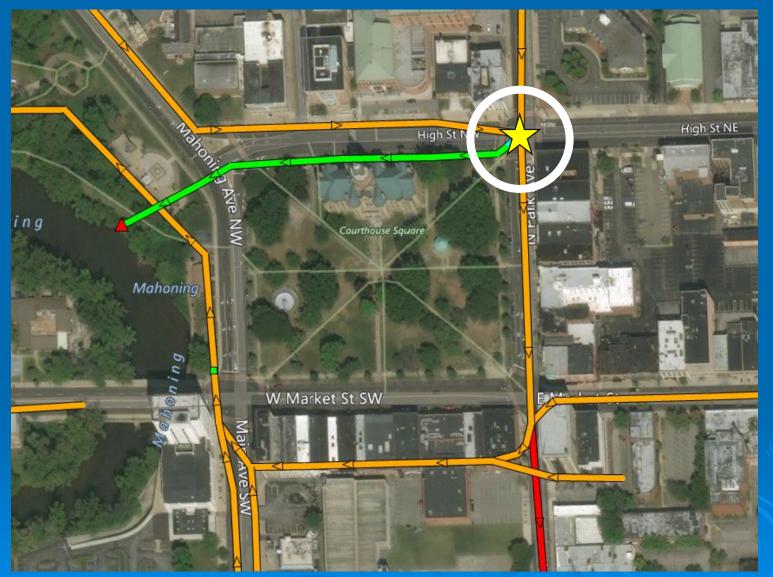
Downtown Study 2015

Too many variables
Inconclusive
Expensive Solutions
No Guarantees

Comprehensive Sewer Study 2017-2018 > Eliminate the High Street SSO


Alleviate Downtown Flooding Identify: System Bottlenecks Excessive I&I Create a Sewer System Model

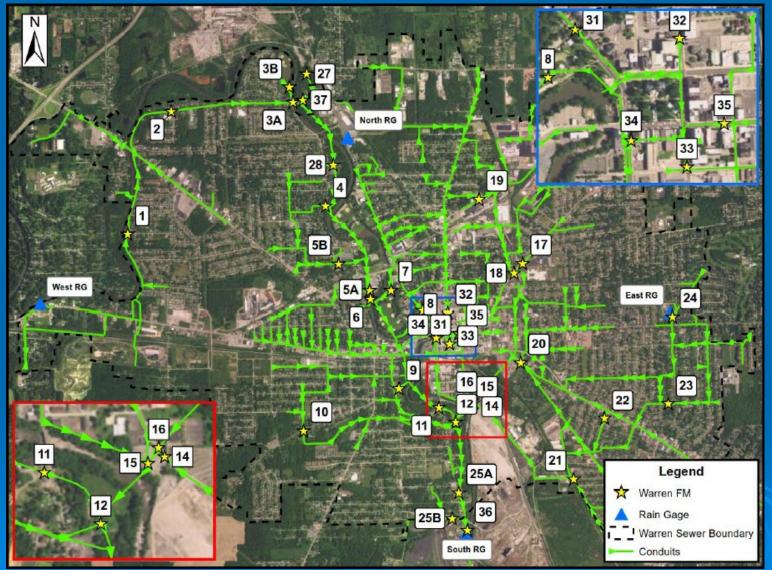
Sanitary Sewer System Map


WARREN, OHIO

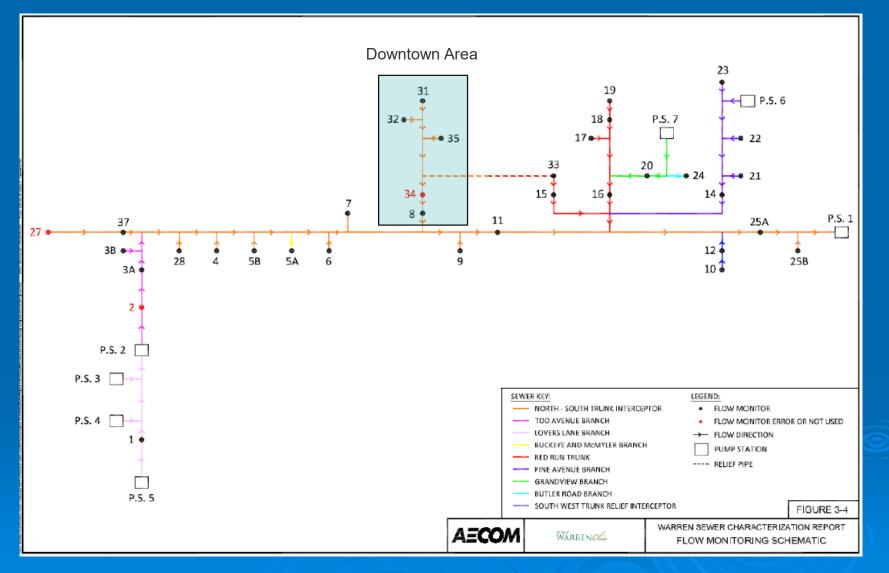
Downtown Warren SSO

Task 1 Sewer System Characterization

- Flow monitoring and rain gauges installed in November 2016
- 36 flow monitors and 5 rain gauges
- Installed for approximately six months total (November 2016-June 2017)



Project Name:	City of Warre	n		Install Date:	Time: 10:40 AM					
Project Job #:	60526190			Installation	BM VG AH					
Site Number/ID:	1			MH Location:		of Lovers Ln	and Caleb F			
Location Description	: Lovers Ln an	d Caleb Rd		Directions to site:	Lovers Ln and Caleb Rd					
Type of Sewer:		Storm		Sanitary		Combined				
Tributary Area:	Residential		Commercial		Undeveloped		Industria			
Manhole Conditions:		Good		Silting	Oil/Grease		Surcharge			
Manhole Type:	Straight Thru		Junction		Bend	Drop	Overflow			
Pipe Construction:		VCP		Concrete	PVC	Brick	Other			
Manhole Depth:	15	(FT)	Pipe Monitore	ed (circle one)	Inlet	Outlet	Overflow			
Rung Conditions:	Ok	-		Pipe Sizes:						
Evidence of Surcharg	-	Yes	Inlet:	Outlet:	Pipe 1:	Pipe 2:	Pipe 3:			
MH Atmosphere Com		20.8	24"	24" 24"						
	er Information			Flow Characteristics:						
Meter Type:	FL 900		Low Level	Low velocity	Turbulent Laminar atus Readings at Installation					
Meter Owner	Rental	AECOM V	Rea	1	-		-			
Vendor:			≅	Time:	1	2	3			
Meter Serial Number:			METER	Depth	4.12	4.68				
Sensor Types:	AV		2	Velocity Flow	1.23 0.286	0.37	<u> </u>			
Sensor S/N:	8481		_	FIOW	0.200	0.37				
Sensor Location:	US	DS	MANUAL	Depth	4.8	4.75				
Velocity Direction:	Upstream	03	MAN	Velocity	1.2	1.18	<u> </u>			
Data collection interval			M	anual Velocity Profilin		1.10	i			
Calibration / Bench T		-	.80 Depth	.40 Depth	.20 Depth					
Velocity meter model:			.co bopui	. to Doput	.zo bopin					
Velocity meter calibrat			Calc. Manual \	/elocity:						
Flow Meter Bench Tes										
Additional Setup Equip										
		-								
LOCATION	MAP		PLAN		РНОТО					
*		(24") T						

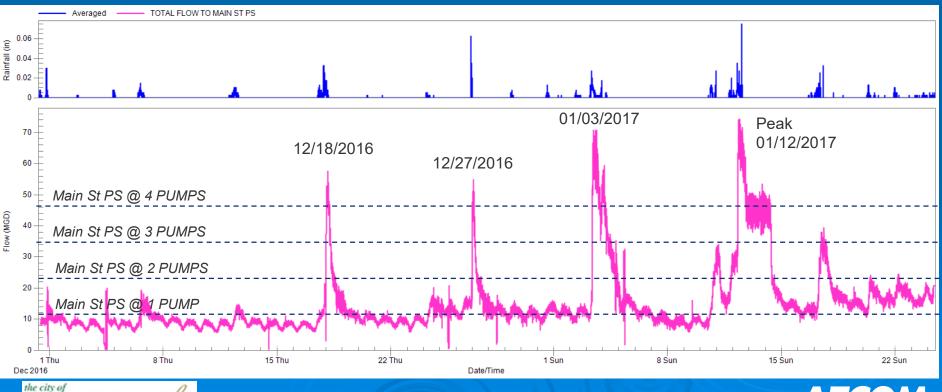

Flow Monitoring Locations

Flow Meter Schematic

Task 1 – Flow Monitoring

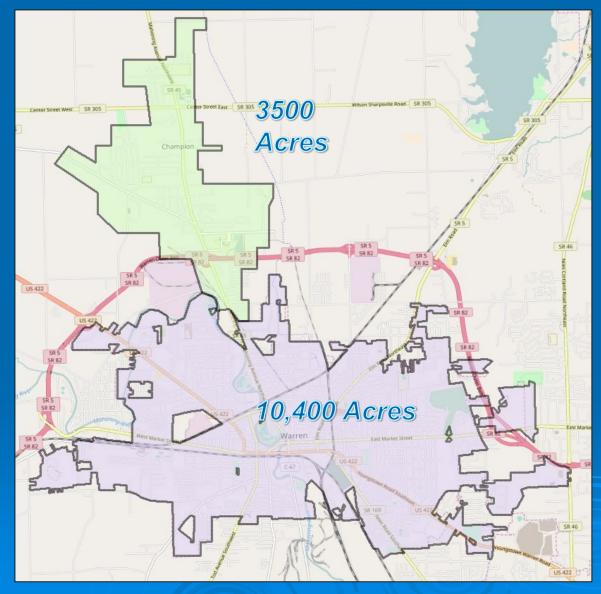
System Characteristics Identified

- 1. Capacity issues
- 2. Identified tributary areas with large I/I contributions
- 3. High I/I percentage calculations
- 4. Inconsistent pump station operations
- 5. River inflow and infiltration



Task 1 – Flow Monitoring

Total Flow at Main St PS = FM25A + FM25B Comparison with Main St PS Capacity

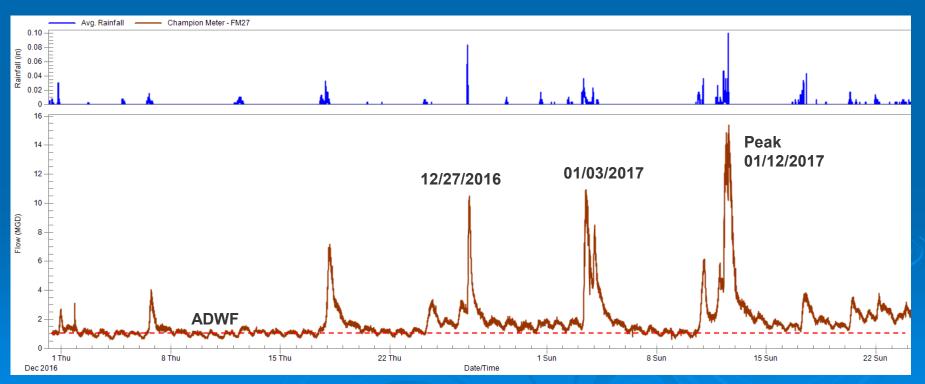

- Average Dry Weather Day: 8MGD
- Peak Flow recorded on Jan 12, 2017: 73MGD

Champion vs. Warren

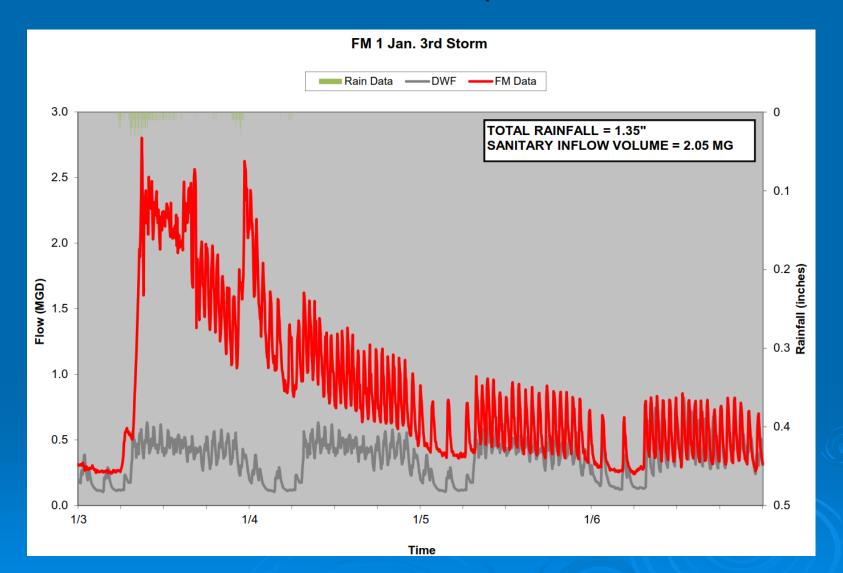
Task 1 – Flow Monitoring

Flow from Champion FM located upstream of permanent meter pit

Champion Meter Pit

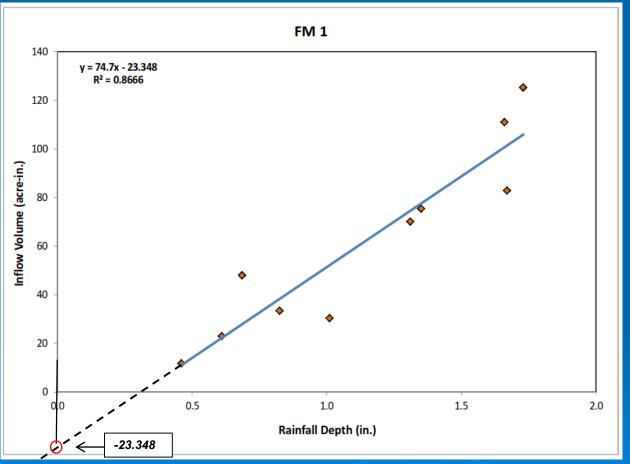


Task 1 – Flow Monitoring


Flow from Champion

- Average Dry Weather Day ~ 1MGD 6% WPC Design Flow
- Peak Flow recorded on Jan 12, 2017 ~ 15MGD 37.5% WPC Peak Flow

AECOM



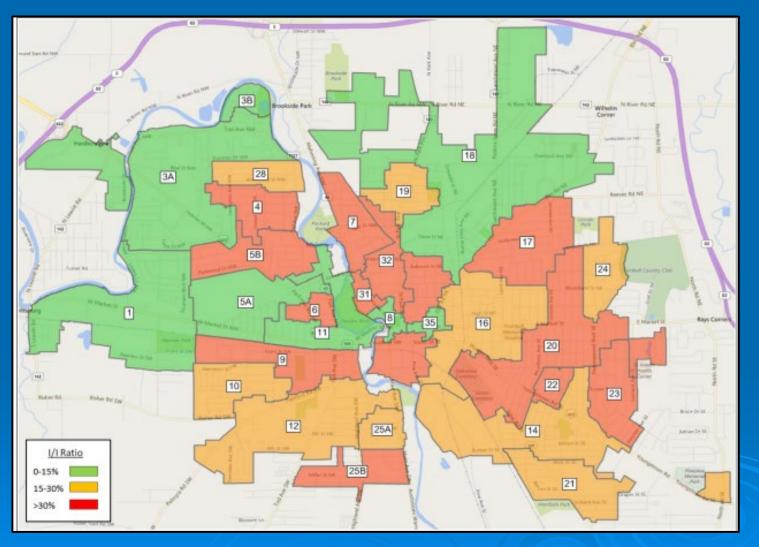
the city of WARREN Ohio

Inflow Volume Linear Regression

Estimates

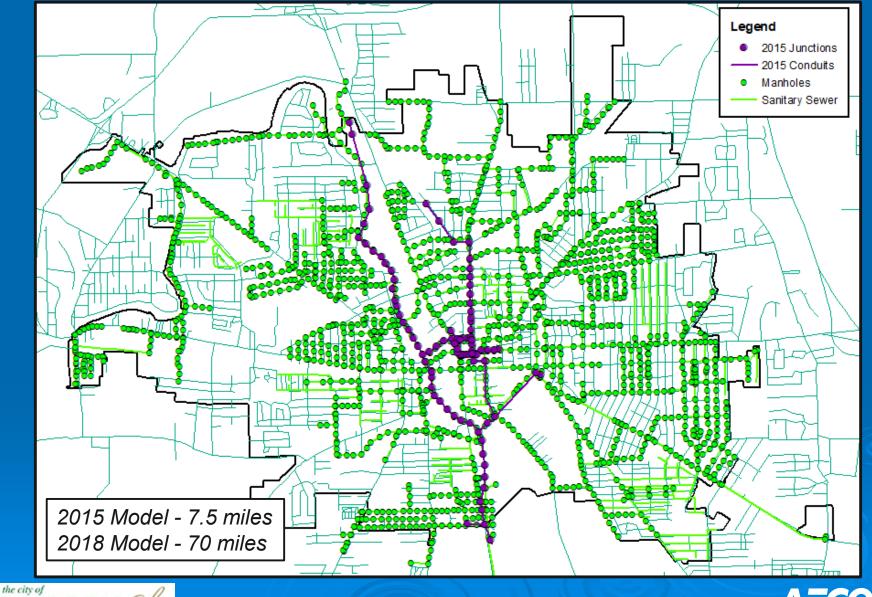
_

- depression storage
- Minimum rain that causes a response
- Predict Inflow
- Calculate Wet Weather I/I Ratio

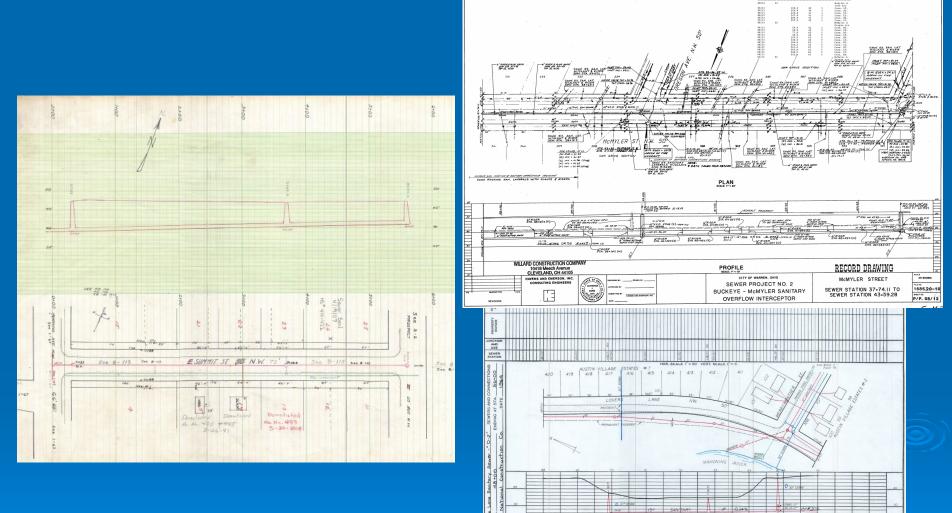

Wet Weather Flow

Dry Weather Flow

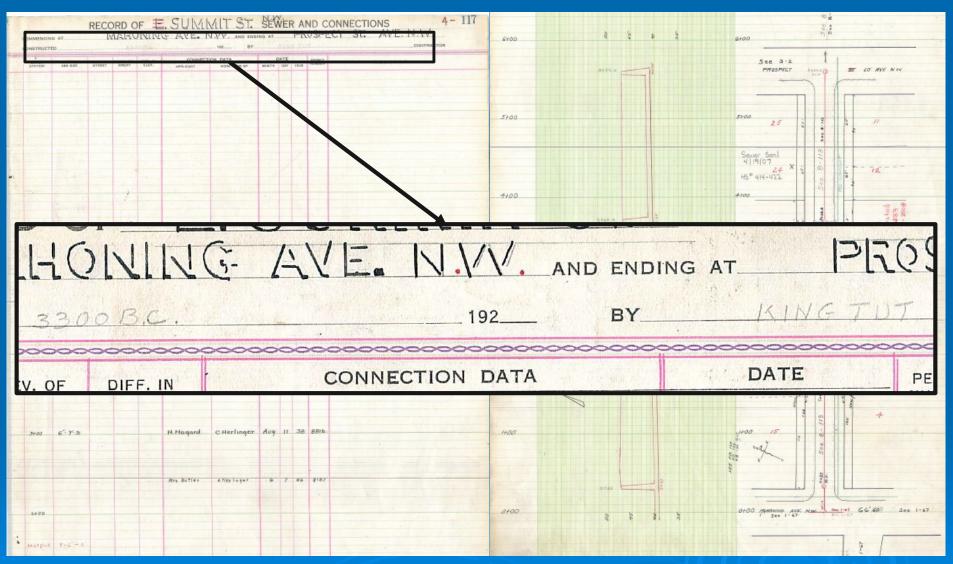
			A discussion of Ma				Average Dry Weather Flow		Dry weather I/I		
Flow Meter Area (acres)	Adjusted	Adjusted Y-	I/I Ratio (%)	Minimum Rainfall (in)		Weekday	Weekend	Weekday	Weekend	Average I/I (%)	
	Slope	Intercept	· · · ·		FM	(MGD)	(MGD)	(MGD)	(MGD)	Average 1/1 (%)	
FM 6	60	36.742	2.8097	61.2	0.00	25b	0.389	0.404	0.311	0.327	80.5
FM 25b	159	94.456	-11.791	59.4	0.12	14	0.885	0.892	0.678	0.683	76.6
FM 32	146	82.745	-14.35	56.7	0.17	14+20	2.218	1.750	1.598	1.173	69.8
FM 15	249	109.07	-13.386	43.7	0.12	24	0.192	0.209	0.131	0.148	69.7
FM 5b	236	96.491	-19.846	40.9	0.21	32	0.260	0.237	0.189	0.157	69.5
FM 17	320	127.82	10.372	39.9	0.00	8	0.237	0.149	0.169	0.099	69.3
FM 7	172	67.83	-11.938	39.4	0.18	22	0.079	0.074	0.054	0.050	68.1
FM 22	60	22.192	0.5388	37.0	0.00	11	3.346	3.339	2.265	2.211	67.0
FM 8+33	264	96.432	-21.782	36.6	0.23	8+33	0.440	0.352	0.294	0.232	66.4
FM 23	202	72.159	-1.9286	35.7	0.03	37	0.757	0.787	0.507	0.508	65.7
FM 4	168	57.032	-4.5161	34.0	0.08	25a	5.948	6.832	3.767	4.494	64.6
FM 9	251	78.732	7.5387	31.4	0.00	20	1.333	0.858	0.919	0.491	64.4
FM 31	40	12.145	-2.1851	30.4	0.18	15	0.324	-	0.207	-	63.8
FM 19	141	42.069	-10.1	29.8	0.24	33	0.203	0.203	0.125	0.133	63.5
FM 24	158	37.673	-4.5887	23.8	0.12	31	0.039	0.039	0.027	0.022	62.8
FM 14+20	1864	438.79	-43.96	23.5	0.10	18	0.595	0.508	0.371	0.309	61.7
FM 21	241	43.422	-2.2933	18.0	0.05	21	0.116	0.117	0.072	0.067	59.9
FM 33	249	44.586	-5.9302	17.9	0.13	7	0.160	0.182	0.108	0.096	59.6
FM 10	208	36.546	-4.8173	17.6	0.13	28	0.058	0.053	0.030	0.035	59.1
FM 28	127	21.414	-2.6679	16.9	0.12	16	2.443	2.276	1.494	1.270	58.6
FM 12	549	89.44	43.084	16.3	0.00	23	0.346	0.380	0.174	0.246	57.9
FM 25a	12010	1925.4	-185.81	16.0	0.10	19	0.040	0.048	0.021	0.030	57.7
FM 14	1083	172.00	-0.5799	15.9	0.00	17	0.203	0.208	0.118	0.116	57.0
FM 16	3096	466.32	-63.142	15.1	0.14	5a	0.058	0.076	0.029	0.044	54.5
FM 8	264	38.571	3.3436	14.6	0.00	5b	0.147	0.183	0.076	0.101	53.6
FM 5a	325	46.165	-10.165		0.00	10	0.137	0.135	0.082	0.061	52.6
				14.2		4	0.066	0.098	0.032	0.050	50.5
FM 3a	1578	187.6	-5.7801	11.9	0.03	3h	0.015	0.017	0.006	0.009	47.4
FM 11	6827	767.39	-91.811	11.2	0.12	6	0.100	0.136	0.050	0.054	43.8
FM 1	669	74.7	-23.348	11.2	0.31	9	0.078	0.098	0.034	0.034	38.5
FM 18	1356	144.18	-48.662	10.6	0.34	3a	0.345	0.799	0.125	0.307	37.8
FM 3b	64	2.3513	-0.6749	3.7	0.29	12	0.157	0.150	0.054	0.047	32.8
FM 37	3329	103.46	25.344	3.1	0.00	1	0.357	0.378	0.091	0.107	26.9
WÁRREN <i>Ohio</i> AEC									ECON		



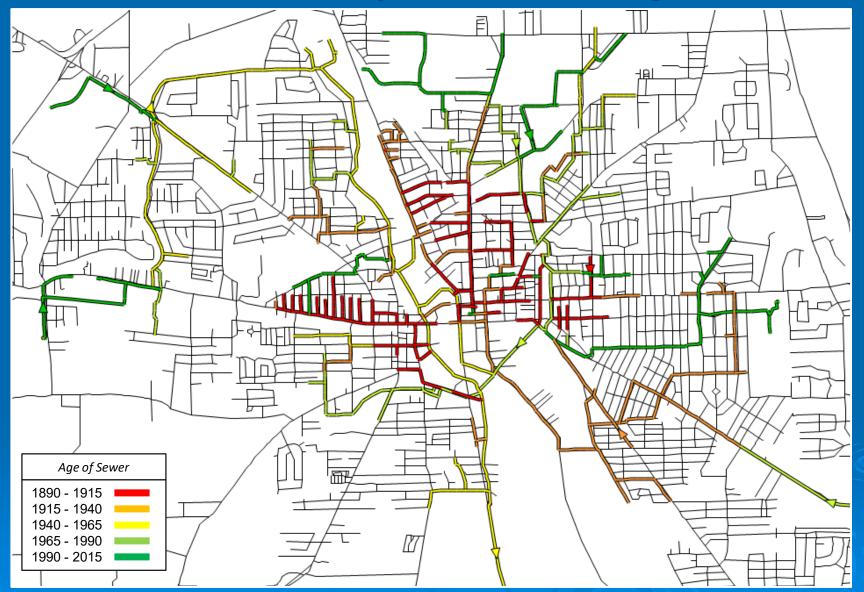
Wet Weather Flow



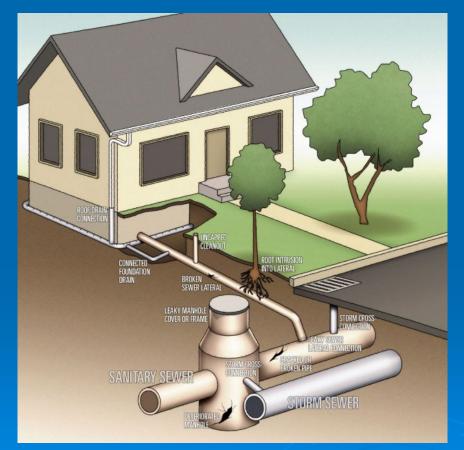
WARREN Ohio

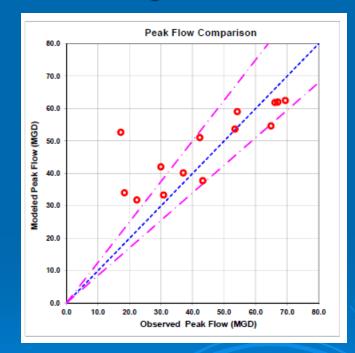


the city of WARREN Ohio



Sheet # W.H. # Mashele 98/13 21



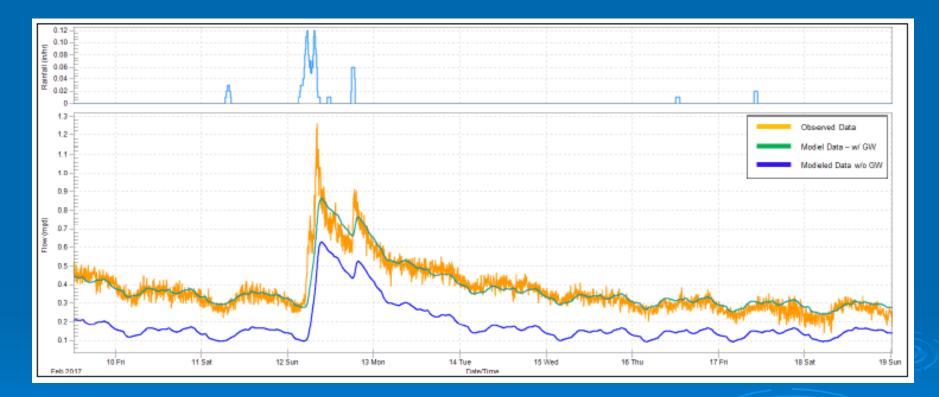


Model Calibration

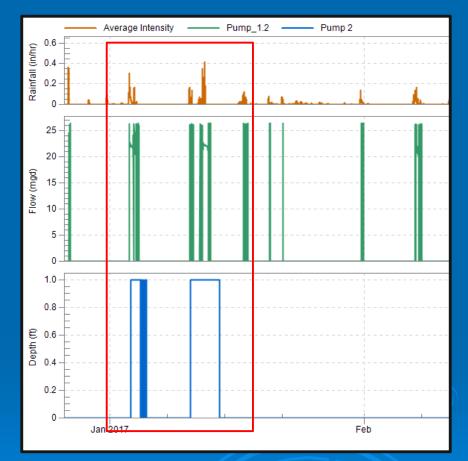
• Utilized PCSWMM 6.1

Utilized NEORSD Modeling Standards

<u>Subcatchments</u>


- % impervious area
- flow length
- slope
- surface depression
- groundwater

Groundwater Effects



Issue = Inconsistent pump station operations

Solution = Created a time series that alters the pump curve

 Factor of 0 = off, Factor of 1 = on

Task 2 – Other System Investigations

SE Sewer

Model Calibration Issues

- 1. Main Pump Station
- 2. Unknown Interactions between Trunk Sewers
- 3. Mahoning River Influence
- 4. Un-modeled Pipes
- 5. Unknown Factors flow restrictions, extra sources of I/I, inaccurate record drawings, covered or buried manholes

Task 2 – Baseline Model

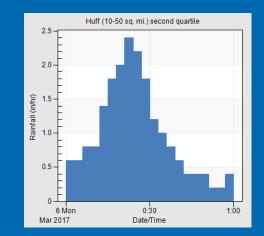
Baseline Model serves as the platform for which sewer alternatives will be analyzed.

What will the baseline parameters include?

Infrastructure Upgrades Planned in the Immediate Future
Main PS Upgrade from 40 MGD to 55 MGD

2. Elimination of High St. Overflow

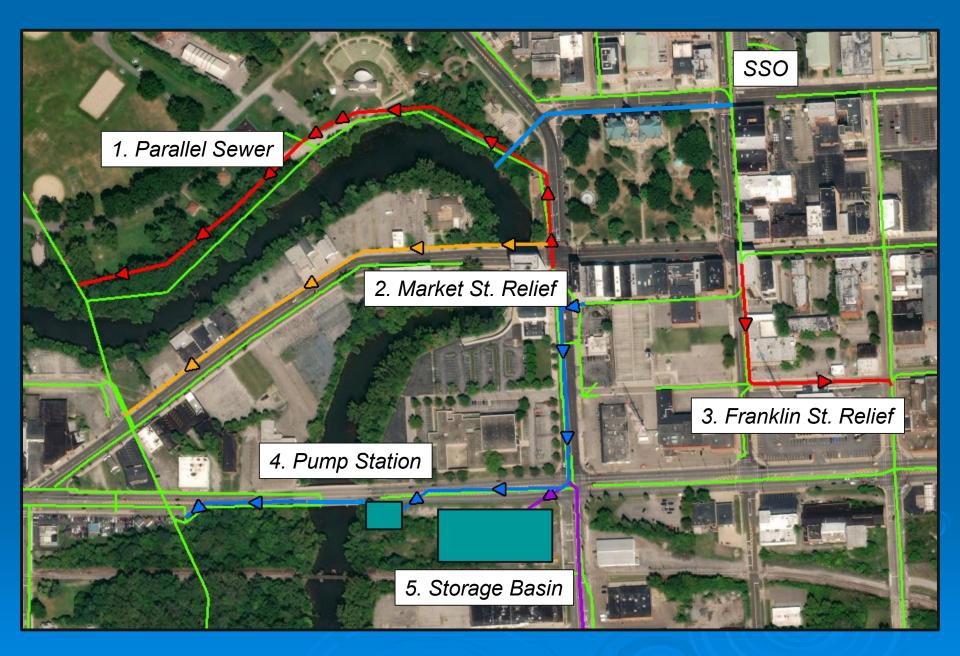
After baseline changes applied then alternative analysis can begin.



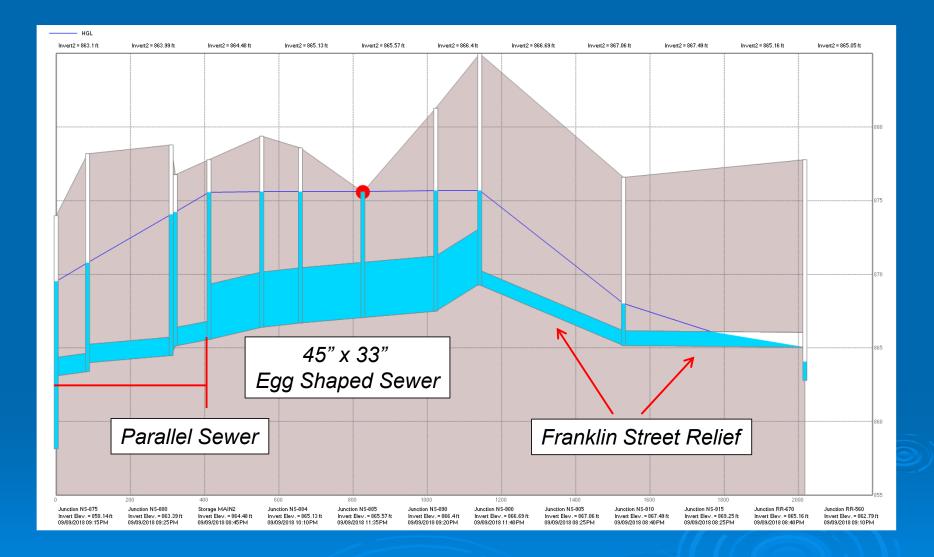
Alternatives Report

Level of Control

Based on results and various system attributes, three (3) different levels of control were selected for analysis.


- 1 year 6 hour storm event
- 5 year 6 hour storm event
- 10 year 6 hour storm event

Implement alternatives and leave the monitored High Street SSO open until large rain events occur to demonstrate that flooding has been eliminated.



Warren Current Sewer Project Schedule

EPA Requirements

- David Grohl Alley Rehabilitation January 1, 2020
- I/I Pilot Study January 1, 2020
- Franklin Street Relief December 1, 2020
- > I/I Expanded Study January 1, 2021
- Perkins Park Parallel Relief Sewer June 1, 2021

The <u>Sewer System Model</u> allows Warren to make better decisions as we move through projects.

Questions?

