

Excellence in Engineering Since 1946

Strand Associates, Inc.® (SAI)

Retrofitting a Pump Station for Future and Intermediate Use

Sanitation District No. 1 of Northern Kentucky (SD1) Richwood Pump Station Intermediate Improvements Project

Ohio Water & Environment Association

2019 Technical Conference

Wednesday, June 26, 2019

Adam W. Athmer, P.E.

Presentation Agenda

This presentation consist's of the following;

- Previous system evaluations and identification of issues
- Preliminary engineering evaluation of alternatives
- Detailed design considerations
- Construction

SD1 Service Area

- Maintains both Sanitary and Storm Sewers in much of Boone, Kenton, and Campbell County, Kentucky
 - 115,000 Customers
 - ~36 Municipalities
 - ~1,640 miles of Sanitary Sewer
 - ~416 miles of Storm Sewer
 - 121 Sanitary Pumping Stations
 - 15 Flood Pumping Stations
 - 3 Regional WWTP's
 - Eastern Regional 4 MGD
 - Western Regional 20 MGD
 - Dry Creek 46.5 MGD

SD1 Service Area

SD1 Service Area

Capital Improvement Plan (CIP)

Capital Improvement Plan (CIP)

Development Within Richwood Pump Station Service Area

Graphic Source: Technical Memorandum – Richwood Pump Station Alternatives Evaluation, Hazen & Sawyer, August 10, 2015

Development Within Richwood Pump Station Service Area

Existing Station Capacities

Curve Point	Curve Description	Flow (gpm)	TDH (ff)
А	Jockey Pump	800 (1.2 MGD)	172
В	Primary Pump No. 1	1,075 (1.5 MGD)	195
С	Primary Pump No. 2	1,325 (1.9 MGD)	206
D	Standby Diesel Pump	1,275 (1.8 MGD)	204
E*	Primary Pumps 1 & 2	1,620 (2.4 MGD)	211
E*	Primary Pumps 1 & 2	2,000 (2.9 MGD)	224
F*	Primary Pumps 1 & 2 + Standby Diesel Pump	2,400 (3.5 MGD)	220

^{*} Max Wet Well Level

Graphic Source: Technical Memorandum – Richwood Pump Station Alternatives Evaluation, Hazen & Sawyer, August 10, 2015

Problems Emerge!

Capacities

- No capacity available to manage wet weather events
- No available capacity for future development

Pump Deterioration

- Pump components nearing end of useful life
- Jockey pump runs continuously

Debris

- Large amounts of residential areas are tributary to this station
- Pumps routinely experience clogging due to fibrous materials (i.e. "flushable wipes")

Original Alternatives Developed

Alt. 1A	 Replace all pumps SD1 SELECTED ALTERNATIVE
Alt. 1B	- Replace and upsize both existing primary pumps
Alt. 2A	- Replace both primary pumps in-kind with upsized motor
Alt. 2B	- Replace both primary pumps in-kind
Alt. 3	- Replace both primary pumps with new pumps in series
Alt. 4	- Replace all pumps with three equally sized pumps
Alt. 5	 Keep existing pumps and add equalization storage
Alt. 6	- Construct a new pumping station
Alt. 7	- Keep existing pumps (Do Nothing!)

PROBLEM NOT COMPLETELY SOLVED

FUTURE IMPROVEMENTS ARE STILL NEEDED TO MEET FUTURE CAPACITY NEEDS

Selected Alternative

- Replace All Pumps
 - Provides Intermediate Solution to Increase Firm Pump Capacities by >300%, ~7.8 MGD

Additional Future Work

New 20-in Force

Additional Future

24-in Force Main (~3.5 mi)

Main and

Main Alternatives

- A Replace Pumps with Vertical Dry-Pit Submersible Pumps
- B Convert Station to Submersible Configuration

Sub-Alternatives

- 1 Construct New Electrical Building Adjacent to Existing Pump Station Building
- 2 Expand Existing Pump Station Building

3 - Install Exterior Electrical Cabinetry

 Alt. A1 – Construct New Electrical Building Adjacent to Existing Pump Station Building

 Alt. A2 – Construct New Electrical Building Adjacent to Existing Pump Station Building

Alt. A3 – Install Exterior Electrical Cabinetry

Alt. B – Convert Existing Dry Well to Submersible Wet Well

Detailed Alternative Comparison

Bid item	Alternative A1 (New Building)	Alternative A2 (Expand Building)	Alternative A3 (Exterior Cabinetry)
Demolition	\$45,000	\$45,000	\$45,000
Structural Improvements	\$130,000	\$115,000	\$50,000
Electrical Improvements	\$490,000	\$480,000	\$530,000
Pumping Equipment	\$680,000	\$680,000	\$680,000
Site Improvements	\$25,000	\$20,000	\$20,000
Land/Easement Acquisition	\$20,000	\$20,000	\$0
Bypass Pumping Needs	\$75,000	\$75,000	\$75,000
Contingency (40%)	\$600,000	\$590,000	\$575,000
Total	\$2,065,000	\$2,025,000	\$1,975,000

Table 1 Preliminary OPCC-Alternative A/Reuse Existing Dry Well

Bid item	Alternative B1 (New Building)	Alternative B2 (Expand Building)	Alternative B3 (Exterior Cabinetry)
Demolition	\$45,000	\$45,000	\$45,000
Structural Improvements	\$130,000	\$115,000	\$50,000
Electrical Improvements	\$505,000	\$495,000	\$535,000
Pumping Equipment	\$690,000	\$690,000	\$690,000
Site Improvements	\$25,000	\$20,000	\$20,000
Land/Easement Acquisition	\$20,000	\$20,000	\$0
Bypass Pumping Needs	\$100,000	\$100,000	\$100,000
Contingency (40%)	\$610,000	\$595,000	\$580,000
Total	\$2,125,000	\$2,080,000	\$2,020,000

Table 2 Preliminary OPCC-Alternative B/Convert to Submersible Station

Detailed Alternative Comparison

Bid item	Alternative A1 (New Building)	Alternative A2 (Expand Building)	Alternative A3 (Exterior Cabinetry)
Demolition	\$45,000	\$45,000	\$45,000
Structural Improvements	\$130,000	\$115,000	\$50,000
Electrical Improvements	\$490,000	\$480,000	\$530,000
Pumping Equipment	\$880,000	\$620,000	\$680,000
Site Improvements	\$25,000	\$20,000	\$20,000
Land/Easement Acquisition	\$20,000	\$20,000	\$0
Bypass Pumping Needs	\$75,000	\$75,000	\$75,000
Contingency (40%)	\$600,000	\$590,000	\$575,000
Total	\$2,065,000	\$2,025,000	\$1,975,000

Table 1 Preliminary OPCC-Alternative A/Reuse Existing Dry Well

Bid item	Alternative B1 (New Building)	Alternative B2 (Expand Building)	Alternative B3 (Exterior Cabinetry)
Demolition	\$45,000	\$45,000	\$45,000
Structural Improvements	\$130,000	\$115,000	\$50,000
Electrical Improvements	\$505,000	\$495,000	\$535,000
Pumping Equipment	\$800,000	\$620,000	\$690,000
Site Improvements	\$25,000	\$20,000	\$20,000
Land/Easement Acquisition	\$20,000	\$20,000	\$0
Bypass Pumping Needs	\$100,000	\$100,000	\$100,000
Contingency (40%)	\$610,000	\$595,000	\$580,000
Total	\$2,125,000	\$2,080,000	\$2,020,000

Table 2 Preliminary OPCC-Alternative B/Convert to Submersible Station

Detailed Alternative Selection

Bid item	Alternative A1 (New Building)	Alternative A2 (Expand Building)	Alternative A3 (Exterior Cabinetry)
Demolition	\$45,000	\$45,000	\$45,000
Structural Improvements	\$130,000	\$115,000	\$50,000
Electrical Improvements	\$490,000	\$480,000	\$530,000
Pumping Equipment	\$680,000	\$620,000	\$680,000
Site Improvements	\$25,000	\$20,000	\$20,000
Land/Easement Acquisition	\$20,000	\$20,000	\$0
Bypass Pumping Needs	\$75,000	\$75,000	\$75,000
Contingency (40%)	\$600,000	\$590,000	\$575,000
Total	\$2,065,000	\$2,025,000	\$1,975,000

Table 1 Preliminary OPCC-Alternative A/Reuse Existing Dry Well

Bid item	Alternative B1 (New Building)	Alternative B2 (Expand Building)	Alternative B3 (Exterior Cabinetry)
Demolition	\$45,000	\$45,000	\$45,000
Structural Improvements	\$130,000	\$115,000	\$50,000
Electrical Improvements	\$505,000	\$495,000	\$535,000
Pumping Equipment	\$800,000	\$620,000	\$620,000
Site Improvements	\$25,000	\$20,000	\$20,000
Land/Easement Acquisition	\$20,000	\$20,000	\$0
Bypass Pumping Needs	\$100,000	\$100,000	\$100,000
Contingency (40%)	\$610,000	\$595,000	\$580,000
Total	\$2,125,000	\$2,080,000	\$2,020,000

Table 2 Preliminary OPCC-Alternative B/Convert to Submersible Station

Design Constraints

- Available Property (~0.25 ac)
 - 1990 Easement ~113' x 75'
 - 2002 Easement ~107' x 20'

Design Constraints

- Variable Flow Regimes
 - New Jockey Pump rated for 2,500 gpm (3.6 MGD)
 - Selected Pump Operating Range 2,600-840 gpm (3.7-1.2 MGD)
 - New Primary (Wet Weather) Pumps rated for a firm 5,400 gpm (7.8 MGD) and a total 6,944 gpm (10 MGD)
 - Selected Pump Operating Range 5,450-1,500 gpm (7.8-2.2 MGD)

Criteria	New 20-Inch Force Main	Old 16-Inch Force Main
No. of Pumps	1	1
Target Capacity	2,500 gpm (3.6 mgd)	2,500 gpm (3.6 mgd)
Static Head	170 ft	175 ft
Dynamic Head	22 ft	47 ft
TDH	192 ft	222 ft

Dry Weather Conditions – Target Pump Selection Criteria

Criteria	New 20-Inch Force Main	Old 16-Inch Force Main
No. of Pumps	2	2
Target Capacity	6,944 gpm (10 mgd)	6,944 (10 mgd)
Static Head	170 ft	175 ft
Dynamic Head	168 ft	298 ft
TDH	338 ft	473 ft

Pump Selections

- Jockey Pump
 - 250 HP, NT 3231/745 3~ 480

- Wet Weather Pumps
 - 455 HP, CT 3240/845 3~ 450

Design Constraints

- Emergency Pumping Operations
 - Existing Standby Diesel Pump to remain
 - Supplemented by portable standby pump if necessary based on SD1 standard operation procedures

Design Constraints

Adjacent Construction Activities

Design Considerations to Reuse Existing Building

- Bypass Pumping During Construction
- Pump Access and Maintenance
- Variable Frequency Drive Operations
- Electrical Cabinet Constraints
- Heat Loads and Ventilation Needs

Bypass Pumping During Construction

Phase 1 – Wet Well Renovations

Bypass Pumping During Construction

Phase 1 – Wet Well Renovations

Phase 2 – Dry Well Renovations

Pump Access and Maintenance

Pump Access and Maintenance

Variable Frequency Drive (VFD) Operations

- Allow wet weather pumps to operate in wide array of flow regimes
- Force Main Scouring
 - Primary Wet Weather Pumps will not run during dry weather until development is established
 - Each day at ~1:00 am the well will be permitted to fill and activate one of the wet weather pumps and ramp up to full speed. Pumps alternate each night
- Fibrous Materials ("Flushable Wipes")
 - Not able to screen influent from both lines
 - VFD will operate pump in reverse at a low frequency at each start up and if excess amp draw is detected.

Electrical Cabinet Constraints

No need to utilize expensive exterior cabinetry.

Congested interior layout!

Heat Loads and Ventilation

Construction

BEFORE

AFTER

Suction Line Installation

Quick Disconnect - Variance

Safety Procedures - Control of Hazardous Energy Lockout/Tagout Program

Control of Hazardous Energy Lockout/Tagout (LOTO) Program

29 CFR 1910.147 29 CFR 1910.333 803 KAR 2:309

Congested Construction... From Top

.... To Bottom!

Requires Unique O&M Considerations

Construction Modifications Due to Adjacent Construction

Construction Modifications Due to Adjacent Construction

Construction Modifications Due to Adjacent Construction

Finished Product!

Considerations For Your Next Retrofit Project

- Look into the system to best understand the forecasted changes
- Understand your limitations at the existing site
- Cheapest cost doesn't always mean best alternative. Compare both cost and risk factors to select most appropriate approach forward
- Don't use a square peg in a round hole! Close coordination with O&M staff to determine what techniques can be implemented with available staff capabilities
- Construction <u>WILL HAVE</u> issues... design and construction oversight must be flexible

Strand Associates, Inc.® (SA)

QUESTIONS?

Adam W. Athmer, P.E. 513.861.5600
Adam.Athmer@strand.com

Excellence in Engineering Since 1946