

Excellence in Engineering Since 1946

OWEA Technical Conference & Expo

Nutrients Technical Session June 26, 2019 1:30 – 2:15 PM

The City of London A Look into Nutrient Removal Design

Presented by: Jamie Mills, E.I. Strand Associates, Inc.[®]

Presentation Outline

- About City of London WWTP
- City of London Nutrients
- Process Exploration
 - Total Nitrogen Removal
 - Biological Phosphorus Removal
 - Chemical Phosphorus Removal
 - Bench Testing
 - Design
- Paths Forward

Presentation Outline

About City of London WWTP

- City of London Nutrients
- Process Exploration
 - Total Nitrogen Removal
 - Biological Phosphorus Removal
 - Chemical Phosphorus Removal
 - Bench Testing
 - Design
- Paths Forward

City of London WWTP

London WWTP Service Area:

- London Population 10,100
- Two State Correction Institutions
 - 4750 Inmates
- Average Flow 2.68 MGD

Map Data: Google

Source: Ohio Department of Transportation

City of London WWTP

- Upgrade in 2007
- Design Flow 5.8 MGD
- Peak Flow 17.1 MGD
- Cost \$24M+

With Permission of: Dan Leavitt

With Permission of: Dan Leavitt

With Permission of: Dan Leavitt

Existing WWTP Liquid Train

Map Data: Google

Existing WWTP Solids Train

Map Data: Google

Presentation Outline

- About City of London WWTP
- City of London Nutrients
- Process Exploration
 - Total Nitrogen Removal
 - Biological Phosphorus Removal
 - Chemical Phosphorus Removal
 - Bench Testing
 - Design
- Paths Forward

City of London – Nutrients

Total Phosphorus Loading

Plant Data- 3 Months Total Phosphorus

	Influent	Primary	Effluent
Average	3.86	4.01	1.76
Daily Maximum	8.94	10.2	3.66

City of London – Nutrients

Total Phosphorus Loading

2016 Septic Hauling

- WWTP received 2,753,615 gallons
- Septic TP: Approximately 15 lbs TP/day

2018 Septic Hauling

- WWTP received 3,617,541 gallons
- Septic TP: Approximately 20 lbs TP/day

2019 Septic Hauling (Up to May)

- WWTP received 1,879,270 gallons
- Septic TP: Approximately 26 lbs TP/day

With Permission of: Dan Leavitt

City of London – Nutrients

- City of London WWTP discharges to Oak Creek
 - Oak Creek is a tributary of Deer Creek lake
- Oak Creek flows in Comparison to WWTP flows
 - Low flow Stream 1.5 MGD
 - Design flow 5.8 MGD
 - Average Flow 2.8 MGD

©iimages-vectorstock.com

Presentation Outline

- About City of London WWTP
- City of London Nutrients
- Process Exploration
 - Total Nitrogen Removal
 - Biological Phosphorus Removal
 - Chemical Phosphorus Removal
 - Bench Testing
 - Design
- Paths Forward

Nutrient Removal Options

	Phosphorus Control	Nitrogen Control
Physical/Chemical Processes	 Chemical precipitation Clarification/filtration Media adsorption/ion exchange Chemicals + UF membranes Reverse osmosis Struvite precipitation 	 Air or steam stripping Ion exchange Break-point chlorination Activated carbon Struvite precipitation
Biological Processes	(Enhanced) Biological Phosphorus Removal	 Ammonification (hydrolysis) Nitrification Denitrification Deammonification (anammox)

Total Nitrogen Removal

Nitrification $NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-$ Active microbes: Nitrosomonas, Nitrobacter Denitrification $NO_3^{-} \rightarrow NO_2^{-} \rightarrow N_2O \rightarrow N_2$ Active microbes: Pseudomonas, Achromobacter, Micrococcus

Source: Maryland Biochemical Company

Total Nitrogen Removal Benefits

$$NH_3 - N \rightarrow NO_2 \rightarrow NO_3 \rightarrow N_2$$

- Increased Settleability
- Nitrogen Removal (Good for the receiving streams)
- Alkalinity Restoration
- Oxygen Credit/Energy Savings
- Increased Oxygen Transfer
- Beneficial for BPR

Presentation Outline

- About City of London WWTP
- City of London Nutrients

Process Exploration

- Total Nitrogen Removal
- Biological Phosphorus Removal
- Chemical Phosphorus Removal
- Bench Testing
- Design
- Paths Forward

• Facilitate Growth of Phosphorus Accumulating Organisms (PAOs)

Biological P Removal - Principles

Controls and Monitoring of PAOs

Oxidation Reduction Potential Values and Corresponding Biochemical Reactions

Several Difference Tank Configurations Exist

- A2O Process
- Cape Town Process
- Bardenpho
- RAS Fermentation

Where is BPR a Good Candidate?

- Where BPR tends TO work
 - Plants with long sewers/force mains
 - High strength wastewater
 - Large industrial flows with high soluble BOD
- Where BPR tends NOT to work
 - Plants with low strength wastewater
 - Fermentation step or soluble BOD may need to be added
 - Attached growth plants
 - Trickling filters/Rotating Biological Contactors (RBCs)
 - Plants that use co-thickening

Presentation Outline

- About City of London WWTP
- City of London Nutrients

Process Exploration

- Total Nitrogen Removal
- Biological Phosphorus Removal
- Chemical Phosphorus Removal
- Bench Testing
- Design
- Paths Forward

Chemical Phsophorus Removal - Principles

- Chemical Phosphorus Removal
 - Add lime, iron, or aluminum salt
 - Precipitation of soluble phosphorus
 - Precipitated P removed during clarification, filtration
 - Relatively simple process
 - Higher sludge production

Courtesy of: Strand Associates, Inc.®

Chemical P Removal - Principles

Chemical Phosphorus Removal (CPR)

Pros

- Simplicity
- Effectiveness

Cons

- Lowers pH
- Consumes alkalinity
- Increases sludge production 15-25%

Courtesy of: Strand Associates, Inc.®

Presentation Outline

- About City of London WWTP
- City of London Nutrients

Process Exploration

- Total Nitrogen Removal
- Biological Phosphorus Removal
- Chemical Phosphorus Removal
- Bench Testing
- Design
- Paths Forward

Bench-Scale BPR Testing - Purpose

- "Potential Testing" Determine if wastewater has enough VFAs and soluble BOD to facilitate BPR
- Measure phosphorus release with target WWTP raw wastewater and biomass from BPR WWTP

Courtesy of: Strand Associates, Inc.®

Bench-Scale BPR Testing

Courtesy of: Strand Associates, Inc.®

Bench-Scale BPR Testing

Bench-Scale BPR Testing

Example - Ideal Testing Response

Bench-Scale BPR Test Results – City of London

- Anaerobic phosphorous release larger in spiked sample
- Moderate potential for BPR, limited by lack of "food" in influent

CPR Jar Test - Purpose

- Dose Rates Identify the most economical chemical
- Dose Location
- Determine Side Effects
 - pH Depression
 - Alkalinity Loss

Courtesy of: Strand Associates, Inc.®

CPR Jar Test

Courtesy of: Strand Associates, Inc.®

CPR Jar Test Results – City of London

- Higher doses needed for influent vs mixed liquor
- Effectiveness at high doses decreases

Phosphorus Removal Summary

- CPR or BPR can meet 1 mg/L when implemented properly
- Important to understand pros and cons of each process before making decision

Factor	CPR	BPR
Capital Costs	Lower	Higher
Operation	Easier?	More Difficult?
Maintenance	Higher Cost	Lower Cost
Reliability	Higher	Lower
Sludge Costs	Higher	Lower
Lower Limits	May Meet/Filtration	Add CPR/Filtration

Presentation Outline

- About City of London WWTP
- City of London Nutrients

Process Exploration

- Total Nitrogen Removal
- Biological Phosphorus Removal
- Chemical Phosphorus Removal
- Bench Testing

— Design

Paths Forward

WWTP Liquid Train - Incorporating Nutrient Removal Design

ASSOCIATES

WWTP Solids Train – Incorporating P-Removal Design

Digestion and Sludge Storage Stavity Thickener Equalization Tank Sludge Dewatering

Source: Google

Incorporating BPR at London's WWTP

ASSOCIATES

Incorporating N-Removal at Londons WWTP

Courtesy of: Strand Associates, Inc.®

Incorporating CPR at Londons WWTP

ASSOCIATES

Incorporating Solids Handling at London's WWTP

Presentation Outline

- About City of London WWTP
- Nutrients Why Now?
- Process Exploration
 - Total Nitrogen Removal
 - Biological Phosphorus Removal
 - Chemical Phosphorus Removal
 - Bench Testing
 - Design
- Paths Forward

Paths Forward

- Design is complete and now awaiting funding from WPCLF
- Design:
 - To year 2040 and projected population of approximately 18,000
- Nutrient Project includes
 - Add Denitrification for Total Nitrogen Removal
 - Implement A₂/O Process for Bio-P Removal
 - Implement Chemical Phosphorus Removal
 - Add Sludge Equalization Tank for Sludge Storage

Questions?

Jamie Mills, E.I. Strand Associates, Inc.[®] (614) 835-0460 <u>Jamie.Mills@strand.com</u>

Excellence in Engineering Since 1946

BPR Process Understanding Still Evolving Today

- Conventional mainstream anaerobic zone promotes Accumulibacter PAO that needs supply of VFA (acetic and propionic)
- Mainstream conditions not ideal for symbiotic PAO species like Tetrasphaera, which can ferment glucose and amino acids and other higher carbon forms and also store phosphorus
- Sidestream anaerobic fermenter allows Tetrasphaera produce VFA that allows Accumulibacter to also function alongside
- Tetrasphaera denitrify under anoxic conditions
- Keys to the puzzle:
 - Need ORP < -300 mV; most anaerobic zones struggle to get -150 mV
 - Impossible to achieve with NO3 or DO present
 - Turbulence, air entrainment, air mixing prevent low ORP

Key Influent Data

- Minimum recommended influent concentrations and ratios
 - Readily biodegradable soluble COD: 60 mg/L
 - BOD₅/TP: 20
 - Soluble BOD₅/soluble phosphorus: 15
 - Total COD/TP: 50

London: CBOD₅/TP = 44 mg/L (Influent) CBOD₅/TP = 36 mg/L (Primary Effluent)

City of London – Nutrients

Total Phosphorus Recycle

Belt Press Filtrate

- Class A anaerobic digester system
- 2016 Sludge Press 5.67 MG
- 22 lbs TP per day in the Filtrate

With Permission of: Dan Leavitt

