City of Columbus

Determining WWTP Screen Capacity During Wet Weather Flows

DEPARTMENT OF PUBLIC UTILITIES

Troy Branson, Columbus DOSD TE Dante Fiorino, Brown and Caldwell June 26, 2019

Screen Capacity

- Difficult to define
- Varies depending on influent wastewater
- Recently installed two new screens
- Had to evaluate existing screens
- Want to share lessons learned

Agenda

Background Troy Branson, Columbus DOSD TE

Screen and Grit Building

Fine Screen Channels

Plate Screens

Did You Flush This?

Structural Failure

- Plate screens experienced structural failure shortly after installation
- SWWTP developed comprehensive retrofit to prevent future failures
- Alternate operating procedure to increase screen speed, avoid blinding
- Caused excessive wear on moving parts, high maintenance cost
- Retrofits used expensive materials like titanium bolts, increasing cost

Bottom View of Screen

Side Channel View

Overall CEPT Project

Future Headworks Profile

- Six new raw sewage pumps (two open slots, 4 replace)
- Two new fine screens
- New 110 MGD CEPT train after screens

Brown and Caldwell

Project Goals

- Increase screen firm capacity to 440 MGD from 330 MGD
- Consider future build out capacity of 550 MGD when sizing new screens
- Meet land application regulations (5/8-inch max)
- Address existing issues

Screen Aperture Size

Screenings on Belt Conveyor

Existing Conditions

Troy Branson, Columbus DOSD TE

Hydraulic Stress Test

Existing Screen – Previous Condition

Existing Screen – New Conditions

Other Findings

- Influent gates lower than peak level, overflowed during test
- Grit settling in influent channel in front of screen during dry weather
- Influent stop logs too difficult to close, forces operation of screens in pairs
- Effluent slide gates lower than bypass elevation, unsafe if being maintained

Overflow Influent Gate

Screen Blinding (12.23.14)

Instrumentation Findings

- Influent level sensors not accurate during peak flows
- Sensor set too low within channel, inundated by flow (toilet paper)
- Affects screen speed operations
- Staff unaware of bypass events
- Programmed 3 minute delay on screen speed

Influent Level Sensor

Module Properties: RACK 8.9 (1756-IF6I 1.1) General Connection Module Into Configuration Channel 0 1 2 3 4 5 Excling High Signal: Low Signat: Low Engineering: Low Engineering:	[1] Alarm Configuration [Input Range: Sensor Offset: Sensor Offset: Notch Filter: Digital Filter: Digital Filter:	Calibration Backplane 0 ma to 20 ma 0.0 60 Hz 0 2 ms	
BTS: 100 - ms	Cancel	Apply	

Level Sensor Configuration

Design Approach

Dante Fiorino, Brown and Caldwell

Capacity Analysis

- Existing screens in future = 90 MGD
- Why was tested flow ability lower than stated capacity?
- What capacity for new screens is needed?

SGB SCADA

- 550 MGD buildout firm requires four 125 MGD
- Capacity = slot velocity x effective area (Q = vA)
- Limited by available headloss, screen blinding

Existing Screen SCADA

Screen Blinding

- Effective area = Open Area Screen Blinding
- Screen blinding has significant impact on effective area
- Backing into blinding for existing screens from test leads to 40% blinding
- Same as the recommended assumption in BC guide specs

Before Test

During Test

Slot Velocity

- Higher slot velocity creates greater headloss
- Higher slot velocity increases blinding potential
- Creates a cycle leading to backups
- WEF MOP 8 recommends maximum v = 4 fps
- Existing screen had 7.2 fps without blinding

Channel Velocity

Ideal Design

Realistic Design

New Screens

Dante Fiorino, Brown and Caldwell

Alternative Analysis

Perforated Plate Screen

- <u>Advantages</u>
 - High capture efficiency
 - Open bid design
- Disadvantages
 - High headloss
 - Wash water demand
 - In-channel maintenance
 - Structural failure history

Multi-Rake Bar Screen

- <u>Advantages</u>
 - Low headloss
 - No wash water demand
 - Robust structural design
 - Open bid design
- <u>Disadvantages</u>
 - Lower capture efficiency
 - In-channel maintenance

Flexible Multi-Rake Bar Screen

- <u>Advantages</u>
 - Low headloss
 - Continuous removal
 - No wash water demand
 - Robust structural design
- <u>Disadvantages</u>
 - Lower capture efficiency
 - Proprietary design

Recommendations

Specification Requirements

Don't rely on vendors to provide your screen design

- Assume 40% screen blinding minimum
- Check with hydraulic stress test on existing screens if possible
- Define Bar Loss Coefficient = 0.84
- Provide exact flow conditions and hydraulic assumptions
- Require Ohio PE structural approval of available headloss

Factory Witness Testing

Screen Installation

Screen Installation

Screen Installation

Gate Installation

Operational Demonstration

Lessons Learned

- Screen capacity is difficult to define
- Influent wastewater constituency impacts capacity
- Define your requirements vs. goals
 - Screen capacity, slot velocity, channel velocity, aperture size
- Be aware of design parameters, close is better than nothing
- Incorporate operational philosophy into design
- Low maintenance is key, slow and steady wins the race

Acknowledgements

- City of Columbus
 - Darin Wise
 - Rick Kent
 - Jeff Hall
 - Stacia Eckenwiler
- Brown and Caldwell
 - Dave Nitz
 - Brett Farver

Presenters

- Troy Branson
 - Columbus DOSD TE
 - Project Manager
 - (614) 645-7423
- Dante Fiorino
 - Brown and Caldwell
 - Sr. Engineer
 - (614) 923-5009

Questions/Discussion

