### Nutrient Recovery as a Sustainable Biosolids Management Strategy

Wendell O Khunjar, PhD and Ron Latimer, P.E Hazen and Sawyer

#### Todd Williams, P.E., BCEE and Sam Jeyanayagam PhD., PE., BCEE

**CH2M HILL** 







- Joe Rohrbacher, PE Hazen and Sawyer
- Vivi Nguyen Hazen and Sawyer
- Chirag Mehta University of Queensland, Australia
- Damien Batstone, PhD University of Queensland, Australia
- Tim Muster, PhD CSIRO
- Stewart Burns, PhD CSIRO
- Ron Alexander R. Alexander Associates
- Tania Datta, PhD







### Nutrients and the Environment

### Resource Recovery for Management of Nutrients in WWTPs

- Recovery from sidestreams
- Recovery from biosolids/ash

### Future Directions







### Nutrient planetary boundaries are being exceeded due to increased anthropogenic inputs

Adapted from Rockstrom, J., et al. (2009), Nature 461 (7263), 472-5 Adapted from Penuelas, J., et al. (2012), Global Change Biology 18, 3-6







### Human activities have doubled the amount of N in the environment

 $Tg = 10^{12} grams$ 

Adapted from Rockstrom, J., et al. (2009), Nature 461 (7263), 472-5 Adapted from Penuelas, J., et al. (2012), Global Change Biology 18, 3-6



~50% of anthropogenic N due to high rate farming applications







### Human activities are responsible for a 10-fold increase in P input to the environment

Adapted from Rockstrom, J., et al. (2009), Nature 461 (7263), 472-5 Adapted from Penuelas, J., et al. (2012), Global Change Biology 18, 3-6



 $Tg = 10^{12} grams$ 

~50% of the anthropogenic P is lost to the environment







### Nutrient usage cycle currently assumes an unlimited supply of resources and energy



- Nitrogen gas is a renewable resource but is not readily available for plant growth
- Energy required to convert from non-reactive to reactive
- Energy also required to convert from reactive to non-reactive
- Energy required for engineered N cycle 12.9 to 14.3 kWh/kg N





### Nutrient usage cycle currently assumes an unlimited supply of resources and energy



**Rock Phosphate** 

- Phosphorus is a NON-renewable resource
- 90% of easily minable rock phosphate reserves found in five countries
  - Morocco, Iraq, China, Algeria and Syria
- Phosphorus resources are declining both in quality and accessibility







### Nutrient treatment /removal focuses on removing nutrients from liquid streams





#### A new paradigm of recovery has emerged

#### Recovery of energy and value added products from wastewater









### Nutrient recovery facilitates the recycling of reactive nutrients



#### For nutrient recovery to be a viable option,

- The process must have equivalent treatment efficiency as conventional treatment
- The process must be cost-effective
- The process must be simple to operate and maintain
- There must be a market for the recovered nutrient product(s)





#### How do we enable nutrient recovery in WWTPs?



## Effective nutrient recovery requires a three component approach



- Accumulation step to increase N content > 1000 mg N/L and P content > 100 mg P/L
- Release step to generate low flow and high nutrient stream
- Recovery step produces high nutrient content product







### Effective nutrient recovery from municipal wastes requires a three component approach





HAZEN AN

## WWT Ps accumulate nutrients into the solids treatment process



### The solids treatment process dictates the nutrient content of the biosolids produced







### Solids treatment via digestion can act as the release mechanism

| 1º Treatment                         | 2 <sup>0</sup> Treatment                                                  |                                                 |           |
|--------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|-----------|
| Description                          | Percent of Total<br>Influent Nitrogen<br>Load                             | Percent of Total<br>Influent<br>Phosphorus Load |           |
| Nansemond, Suffolk, VA<br>Centrate   | 13%                                                                       | 29%                                             |           |
| Bowery Bay, NYC<br>Centrate          | 17%                                                                       | *                                               |           |
| Henrico County, VA<br>Centrate       | 15%                                                                       | *                                               |           |
| High Point Eastside, NC<br>Fermenter | *                                                                         | 50%                                             |           |
| Wards Island, NYC<br>Centrate        | 30-40%                                                                    | *                                               | ed        |
| North Durham, NC Centrate            | 19%                                                                       | 30%                                             |           |
| South Durham, NC<br>Centrate         | 21%                                                                       | 25%                                             | WV        |
|                                      | Were thereases the second transition<br>Collaboration Avecaution, Beautin | Environmental Engineers &                       | LITE Scie |

## Nutrient recovery step produces a high nutrient content product

| Accumulation                                                                 | Release                                                                           | Recovery                                                                                   |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <ul> <li>EBPR</li> <li>Algae</li> <li>Purple non-sulfur bacteria</li> </ul>  | <ul> <li>Anaerobic digestion</li> <li>Thermolysis</li> <li>WAS release</li> </ul> | <ul> <li>Chemical precipitation</li> <li>Electrodialysis</li> <li>Gas permeable</li> </ul> |
| <ul> <li>Membrane filtration</li> <li>Adsorption/lon<br/>exchange</li> </ul> | <ul> <li>Sonication</li> <li>Microwave</li> <li>Chemical</li> </ul>               | membrane and<br>absorption<br>Gas stripping                                                |
| <ul> <li>Solvent extraction</li> </ul>                                       | extraction                                                                        | Solvent extraction                                                                         |

#### **Recovered product must:**

- **1.** Have consistent nutrient composition and uniform distribution
- 2. Have no/minimal odors
- 3. Have no/minimal pathogen content
- 4. Have appreciable market value
  - Have desirable physical characteristics





### Market analyses has indicated that P products have a higher value than N products









### The nutrient recovery step is based on chemical precipitation/concentration steps

18

HAZEN AND







### Struvite is often the recovery product of necessity 19

#### • Struvite = $Mg + NH_4 + PO_4$

- NH<sub>4</sub> & PO<sub>4</sub> released in digestion
- Typically Mg limited
- Mg addition for odor control (i.e. Mg(OH)<sub>2</sub>) can promote struvite formation





#### **Miami Dade SDWRF**

#### NYC Newtown Creek WPCP









### Intentional struvite recovery exploits pH dependent chemical precipitation phenomena



#### Fluidized bed reactor or CSTR used for struvite recovery







### There are several commercial options for struvite recovery

| Name of<br>Technology | Ostara Pearl®           | Multiform<br>Harvest<br>struvite<br>technology | NuReSys | Phospaq                | Crystalactor®        |
|-----------------------|-------------------------|------------------------------------------------|---------|------------------------|----------------------|
| Type of reactor       | upflow fluidized<br>bed | upflow fluidized<br>bed                        | CSTR    | CSTR with diffused air | upflow fluidized bed |







## Ostara Pearl™ process markets and sells finished product as Crystal Green fertilizer

#### 8 full-scale facilities in operation

- Durham AWTP OR,
- Gold Bar WWTP Canada,
- Nansemond WWTP VA,
- York WWTP PA,
- Rock Creek WWTP OR,
- Nine Springs WWTP WI,
- HM Weir WWTP Canada,
- Slough STW, United Kingdom

#### • 27 pilot facilities

- US, Europe, Mid-East, China, UK
- Resale of products facilitated by Ostara









### Multiform Harvest also recovers struvite from sidestreams

- Lower Capital Cost
  - Smaller footprint, smaller reactors
- Less refined product
  - Blended and refined in secondary markets
- 2 full scale municipal installations
  - Yakima WWTF
  - West Boise WWTF
  - 2 pilots facilities (US)
- Resale of products facilitated by MFH



STUVITE FERTILIZER



## DHV Crystalator® technology is licensed for use in the US by Procorp

### DHV Crystalator®

- Also used for water softening, metal recovery
- 30 facilities worldwide
- 4 full-scale in the US at industrial plants
  - Alto Dairy WI,
  - Meat processing WWTP OH,
  - Dairy WWTP OH,
  - Solid waste digester FL
  - 4 pilot installations (US, China)

Resale of products facilitated by 3<sup>rd</sup> party through Procorp Images courtesy Procorp/DHV









## Paques Phosphaq<sup>™</sup> uses CSTR configuration for struvite recovery

- 3 installations in the Netherlands
  - Olburgen STW
  - AVIKO Lomm\* (Potato processing)
  - AVIKO Steenderen (Potato processing)
- Can be used in combination with ANAMMOX<sup>™</sup> option
- Resale of products facilitated by third party through Paques











## NuReSys also uses CSTR configuration for struvite recovery

- 7 full-scale installations focused on industrial applications
  - 4 potato processing plants (Belgium)
  - 1 Dairy processing plant (Germany)
  - 1 Pharmaceutical industry (Belgium)
  - 1 Municipal plant (Belgium)
  - 2 pilot installations (Belgium)
- Uses completely stirred reactor (CSTR) configuration





### There are several commercial options for struvite recovery

| Name of<br>Technology                             | Ostara Pearl®           | Multiform<br>Harvest<br>struvite<br>technology | NuReSys                | Phospaq                             | Crystalactor®                                             |
|---------------------------------------------------|-------------------------|------------------------------------------------|------------------------|-------------------------------------|-----------------------------------------------------------|
| Type of reactor                                   | upflow fluidized<br>bed | upflow fluidized<br>bed                        | CSTR                   | CSTR with diffused air              | upflow fluidized bed                                      |
| Name of product<br>recovered                      | Crystal Green ®         | struvite fertilizer                            | Bio <mark>Stru®</mark> | <mark>struvite</mark><br>fertilizer | Struvite,<br>Calcium-phosphate,<br>Magnesium-phosphate    |
| % Efficiency of<br>recovery/<br>treatment (range) | 80-90% P<br>10-50% N    | 80-90% P                                       | 45% P 80% P            |                                     | 85-95% P for struvite<br>> 90% P for calcium<br>phosphate |
| Product<br>marketing/resale                       | Ostara                  | Multiform<br>Harvest                           | N/A                    | N/A                                 | Third party facilitated<br>by Procorp                     |







### P release prior to anaerobic digestion can further minimize nuisance struvite formation

28

HAZEN AND SAWYER

Environmental Engineers & Scientists







## Nutrient recovery via struvite is a mature technology

#### Struvite recovery can:

- Reduce energy and chemical consumption
- Minimize nuisance struvite formation and reduce O&M costs
- Control the nutrient content of the biosolids
- Struvite recovery can be economical when sidestreams contribute:
  - ≥15% of the influent TN load
  - ≥20% P load
- Several commercial technology providers with proven track record
  - Recovered struvite is marketed as a slow release fertilizer
  - Technology providers have different business models for this purpose







## The nutrient recovery step is based on chemical precipitation/concentration steps

30

HAZEN AND SAWYER

| Accumulation                                                                                                                                          | Release                                                                                                            | Recovery      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------|
| <ul> <li>EBPR</li> <li>Algae</li> <li>Purple non-sulfur bacteria</li> <li>Membrane filtration</li> <li>Adversation flor</li> <li>Microwaya</li> </ul> | <ul> <li>Chemical precipitation</li> <li>Electrodialysis</li> <li>Gas permeable membrane and absorption</li> </ul> |               |
| exchange                                                                                                                                              | Chemical                                                                                                           | Gas stripping |
| <ul> <li>Solvent extraction</li> </ul>                                                                                                                | extraction                                                                                                         |               |

#### Gas stripping is appropriate for NH<sub>3</sub> recovery





## Nitrogen can also be recovered from sidestreams via gas stripping and ion exchange



- Large capital investment
- Effective for concentrations > 1000 mg N/L
  - Industrial
  - Agricultural





### Ammonia recovery process from ThermoEnergy is one commercial process for N recovery









### AmRHEX<sup>™</sup> ammonia recovery system from 3XR is also used for N recovery



### No full-scale applications to date







### Nitrogen recovery is more economical at high nutrient concentrations

34

#### From Fassbender 2001

| TABLE 1<br>Centralized Ammonia Recovery Plant Budgetary Estimates |           |                |                 |                 |                |  |
|-------------------------------------------------------------------|-----------|----------------|-----------------|-----------------|----------------|--|
| GPM                                                               | [NH₃] ppm | No. Resin Beds | Size Resin Beds | Cap. Cost, \$MM | O&M, cents/gal |  |
| 250                                                               | 1000      | 3              | 8′              | 5.6 - 10.6      | 2.6            |  |
| 550                                                               | 1000      | 3              | 12'             | 9.3 - 17.0      | 1.5            |  |
| 1000                                                              | 1000      | 3              | 16'             | 15.2 - 24.3     | 1.2            |  |
| 2100                                                              | 650       | 7              | 16'             | 35.8 - 44.0     | 1.0            |  |

 Low resale value of N only products makes N recovery challenging

- N recovery as part of combined N and P product is more economical at present
  - Will need to be revisited as natural gas price/demand varies







## Recovery from biosolids and ash involves multiple steps

| Accumulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | → Release                                   | → Recovery                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|
| <ul><li>EBPR</li><li>Algae</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Anaerobic<br/>digestion</li> </ul> | <ul> <li>Chemical<br/>precipitation</li> </ul> |
| <ul> <li>Purple non-sulfur</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Thermolysis</li> </ul>             | <ul> <li>Electrodialysis</li> </ul>            |
| bacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>WAS release</li> </ul>             | <ul> <li>Gas permeable</li> </ul>              |
| <ul> <li>Membrane filtration</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Sonication</li> </ul>              | membrane and                                   |
| Adsorption/Ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Microwave</li> </ul>               | absorption                                     |
| exchange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chemical                                    | <ul> <li>Gas stripping</li> </ul>              |
| <ul> <li>Solvent extraction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | extraction                                  |                                                |
| La contraction of the second s |                                             |                                                |

 Extraction/recovery can involve acidification, thermolysis, chemical extraction and chemical precipitation





HAZEN AND S

### These processes can be complex and are not yet mature

#### Seaborne process

- 1) acidification
- 2) solids separation
- 3) solids incinerated
- 3) heavy metals precipitation
- 4) de-sulfurized gas -> cogen. plant
- 5) struvite precipitation
- 6) ammonia stripping

#### Krepo process

- 1) sludge thickening (5% DS)
- 2) acidification (pH 1-3)
- 3) thermal hydrolysis (140 C, 30-40-min)

36

- 5) organic sludge separation (50% DS)
- 6) phosphate precipitation
- 7) recycling of precipitant

# Seaborne piloted at Gifhorn WWTP in Germany (2006)

### KREPO Full-scale facilities at Helsingborg and Malmo WWTFs(Sweden)

Dig

## Nutrient recovery from solids and ash produces familiar products

| Name of<br>Process   | Seaborne                                 | Krepro                            | SEPHOS                                                                  | BioCon®              | PASH                                | PHOXNAN            |
|----------------------|------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|----------------------|-------------------------------------|--------------------|
| Product<br>recovered | struvite;<br>diammonium<br>sulfate (DAS) | iron phosphate<br>as a fertilizer | aluminum<br>phoshate or<br>calcium<br>phosphate<br>(advanced<br>SEPHOS) | phosphoric<br>acid   | struvite or<br>calcium<br>phosphate | phosphoric<br>acid |
| Process<br>feedstock | sludge                                   | sludge                            | sewage<br>sludge ash                                                    | sewage<br>sludge ash | sewage<br>sludge ash                | sludge             |

- Few full-scale applications currently exist
- Work is on-going in Europe to make these economical options







## We have multiple options for nutrient recovery for municipal applications



- Nutrient recovery is an integral component of the WWTP of the future.
- Nutrient recovery can be economical when sidestreams contribute:
  - ≥15% of the influent TN load
  - ≥20% P load

#### Four main drivers

- 1. Reduce energy and chemical consumption
- 2. Minimize nuisance struvite formation and reduce O&M costs
- 3. Control the nutrient content of the biosolids
- 4. Provide plant with alternative revenue stream





### There are challenges preventing the adoption of nutrient recovery is challenged by barriers





- 1. What influences the adoption of resource recovery systems?
  - Competing priorities
  - Lack of regulatory driver
  - Relatively long payback period
  - Lack of knowledge
  - Vague timeline



- 2. How should WWTPs implement resource recovery?
- 3. What nutrient recovery technologies are effective?







#### Wendell O. Khunjar Hazen and Sawyer, P.C. wkhunjar@hazenandsawyer.com

Ron Latimer Hazen and Sawyer, P.C. rlatimer@hazenandsawyer.com Todd Williams CH2M HILL Todd.Williams@ch2m.com

Sam Jeyanayagam CH2M HILL Samuel.Jeyanayagam@ch2m.com





