Energy Audits Waste Water Treatment Plants

Ohio Water Environment Association Conference

June 20, 2012

Presented by: Samuel J. Morgan, P.E., LEED AP CT Consultants, Inc.

World Energy Trend

U.S. Energy Information Administration, International Energy Outlook 2011, September 19, 2011.

US Total Energy Usage

	Quaurillion DIU	
Residential	22.2	23%
Commercial	18.2	19%
Industrial	30.1	31%
Transportation	27.5	28%

□ TOTAL

98.0

Oundrillion RTU

US Total Energy Usage Chart Quadrillion BTU

US Electric Energy Usage

	Quadrillion BIU	
Residential	5.0	39%
Commercial	4.5	35%
Industrial	3.3	26%
Transportation	0.3	0.2%

Oundrillian DTU

□ TOTAL

12.8

US Electric Energy Usage Chart Quadrillion BTU

Energy Benchmarking

- Commercial Buildings
 - Energy Star
 - DOE Commercial Buildings Benchmark
 - LEED
 - USGBC US Green Building Council
 - ASHRAE
 - 90.1 Defines Minimum Energy Efficiency Standards
 - 189.1 Allows Adoption of LEED as Building Code

Energy Benchmarking

- WWTP EPA Tools
 - Energy Star EPA Portfolio Manager WTP & WWTP
 - EPA Energy Management Planning Self Assessment Worksheet
 - EPA Groundwater and Drinking Water Energy Use Assessment Tool

EPA Benchmarking Tools for WWTP

- EPA Energy Star Portfolio Manager
 - Performance Score Based on Energy Use per Unit of Flow / Effluent Quality / Treatment Type
 - Accessed On-line
- EPA Energy Use Assessment Tool
 - Drills Down to Equipment Level
 - Allows Utility Bill Analysis
 - Use Before Full Scale Energy Audit _

Non-EPA Benchmarking Tools

WERF Carbon Heat Energy Analysis Plant Evaluation Tool (CHEApet) – for WERF Members

---- Water Environment Research Foundation ----

□ CEE Water and Wastewater Self-Audit Checklists

---- Consortium for Energy Efficiency ----

- NYSERDA Water and Wastewater Focus Program
- Various State Specific Measurement Tools

Electric Usage at WWTP and WTP

- □ 55 Billion Kilowatt Hours (kWh)
- \$4 Billion Annual Energy Cost
- Equivalent to 45 Million Tons of Greenhouse Gas
- Represents 3% of US Electricity Use
- □ Accounts for 35% of Municipal Electric Use
- Preliminary Savings Estimates = 15% 30% _

WWTP Energy Use

- Over 15,000 Wastewater Treatment Plants
- Over 50,000 Water Treatment Plants
- □ WWTP Energy = 25% 35% of Total Plant O&M _

Why Reduce?

- Reduced Energy Costs
- Lower Operating Costs
- Save Water
- Reduced Carbon Footprint
 - Lower Greenhouse Gas Emissions

Reduce Carbon Footprint

- □ Saving 25% of WWTP Energy Equals
 - 9,500,000 Tons CO₂
 - 3,300,000 Tons Recycled Waste Instead of Landfill
 - 22,000,000 Million Barrels of Oil
 - 51,500 Rail Cars of Coal
 - 1,180,000 Homes
 - Carbon sequestered by 2,000,000 Acres Pine Forest

Where Does the Energy Go

End Use	% of Total
Raw Sewage Pumping	12%
Aeration	55%
Anaerobic Digestion	11%
Clarifiers	3%
Solids Handling	8%
Buildings, HVAC, Lighting	6%
Other	5%

WWTP Energy Usage

- Varying Level of Detail
- Varying Level of Costs
- ASHRAE Tiered Levels
 - Level 1 Walk-Through Analysis, Low or No Cost
 - Level 2 Energy Survey Req'd, Identifies Energy
 Conservation Measures with Cost Estimate & Payback
 - Level 3 Detailed Analysis of Capital Intensive Improvements _

- ASHRAE Level I
 - Walk-through Analysis Identifies Areas of Potential Energy Savings
 - Usually ½ Day or Less
 - Suggestions for Quick Payback Projects
 - Suggestions for Areas Needing Further Study
 - Often Performed for Little or No Cost _

- □ ASHRAE Level II
 - May Require One or Two Days at Plant
 - Includes Interviews with Plant Personnel
 - May Require Two or More Weeks to Analyze Utility Data, Pump Curves, Aeration Processes, Other Processes
 - Identify Projects With Short Payback
 - Determine Savings, Costs and Payback Period

- □ ASHRAE Level III
 - May Require Three or More Days at Plant
 - Examines Energy Use in All Processes
 - Proposes Possible Design Modifications
 - Emphasis on Optimization
 - Detailed Cost Est. Often with Significant Investment
 - May Result in Major Energy Savings _

Elements of Level II & III Energy Audit

- Examine and Analyze Utility Bill / Rate Structure
 - Electric, Gas and Water
 - Allocate Usage to Major Processes Energy Balance
- Identify Cost Effective Equipment Efficiency Improvements
- Identify Cost Effective Operational Improvements
 - Often Find Controls Related Improvements (e.g. DO)
- Develop Cost Estimate and Energy Savings
- Determine Payback in Years

Work Product - Level II & III Audit

- Whole Plant Benchmark
- Energy Balance
 - Allocate Electric, Gas and Water to End Use
 - Include 24 Months Usage -- 12 Months Minimum
- Energy Conservation Measures
 - Cost of Implementation -- Level II vs. Level III
 - Energy Savings Include Methods / Calculations
 - Calculate Payback
- Recommendations for Future Study

Energy Audit Focus

- HVAC / Mechanical Systems
 - Mainly in Administrative Buildings
- Electrical Systems
 - Lighting in All Buildings Examine Efficiency / Consider Occupancy Sensors
 - Motor Efficiency (Premium Motor Efficiency Savings)
 - VFD's (Frequent Savings Opportunities)

Energy Audit Focus

- Aeration Systems
 - Blower Efficiency
 - Blower Controls
 - Constant Speed, Throttling, VFD's
 - Diffusers Fine Bubble
 vs. Coarse Bubble

Energy Audit Focus

- Pumping Systems
 - Premium Motor Efficiency
 - Sizing
 - VFD's

- Solids Handling
 - Varies by Plant

Energy Audit Focus - Equipment

- Equipment Assessment
 - Tour Facility
 - Review Plans & Specs
 - Meet with Operating Personnel
 - Understand Current Conditions
 - Discuss Alternatives to be Considered
 - Develop Payback for Each Alternative

Energy Audit Focus - Process

- Process Optimization
 - Review O&M Manual
 - Discuss Operating Techniques
 - Review / Discuss Regulatory Status
 - Consider Present & Future NPDES Discharge Limits
 - Examine Plant Loadings vs. Future Expansion
 - May Develop Computer Model Benchmarking

Energy Audit Focus - Process

- Process Optimization Continued
 - Explore Revising Basic Plant Operating Methods
 - Analyze Process Configuration Changes
 - Calculate Capital Improvement Costs
 - Calculate Energy Savings
 - Determine Payback Period
 - Identify Other Benefits Chemical Reduction, Sludge Removal, etc.

Energy Audit Focus – Utility Optimize

- Utility Optimization
 - Examine Utility Rate(s)
 - □ Consider Alternative Rate Structures Case Study 2
 - Perform Energy Balance End Use Allocation
 - Examine Incentives to Reduce Peak Demand
 - Evaluate Opportunities to Reduce Peak Demand

Energy Audit Focus – Buildings

- Building Auditing
 - Allocate Energy to End Use
 - HVAC
 - HVAC Controls
 - Lighting
 - Envelope

Auditor's Tools

- □ eQuest
- Air Master +
- Motor Master +
- Pumping Assessment Tool (PSAT)
- Numerous Others

Analysis of Implementation Costs

- Auditor Must Help Explore Funding Opportunities
- Identify All Utility Incentive Programs
- Factor External Funding and Utility Incentives into Financial Analysis
- Consider Remaining Useful Life
 - Sometimes Overlooked in Energy Audit
 - Include in Capital Replacement Program

- Aeration Blower
 Optimization
 - Control DO to Minimum Practical Value
 - Match Energy Input to DO – Via Throttling, Timers, Speed Control
 - Change Diffusers from Coarse Bubble to Fine

- Plant Pumping Systems
 - Size for Efficient Operation at Average Conditions
 - Consider Entire System Design

Big Pipes and Small Motors - Not the opposite

- Motors
 - Premium Efficiency Motors
 - Apply Variable Speed Drives

- Plant Anaerobic Digestion
 - Can Usually Reduce Mixing
 - Run Mechanical Mixers Intermittently
 - Consider Running Heater Recirculation Pumps Intermittently
 - Replace Recessed Biosolids Pumps with Semi-open Impeller Non-clogging Pumps
 - Shift Operations to Off-peak Times Where Possible

- Lighting
 - Replace T12 Fluorescent and Incandescent
 - Add Occupancy Sensors
- HVAC in Administrative Buildings
- Water Heating

Case Study 1 – City of Canton Water Reclamation Facility

Case Study 1 Canton Water Reclamation Facility

- De-nitrification Activated Sludge Process
- 39 MGD
- Major Facility Improvement Project
- Install New MBR Membrane Bioreactor System
- Convert Blowers From Activated Sludge Aeration to MBR Scour Operation

Case Study 1 Canton Water Reclamation Facility Aeration

- □ 4 800 hp Blowers and 1 500 hp Blower
- Centrifugal Blowers
- 4160 Volt Motors
- Common Air Header
- Inlet Valve Throttling
- Controlled by Header Pressure

Case Study 1 - VFD's vs. Throttling

- Should VFD's be Added?
- □ If Yes, How Many VFD's? (1, 2, 3, 4 or 5)
- Blower Type: Centrifugal
- □ Blower Motors: 4160 VAC, 3570 RPM
- □ Blower HP: 4 800 hp + 1 500 hp
- □ VFD's at 4160 volts Are Very Costly
- Involve Blower Manufacturer in Analysis

Case Study 1 – VFD's vs. Throttling

- Required SCFM Based on Total Plant Flow (Q)
- Q Determines Number of MBR Basins
- MBR Basins 5 Minimum, 12 Maximum
- Developed Hourly SCFM Requirements
- 12,000 48,000 SCFM @Outlet Pressure = 7.1 psi
- Derived Number of Blowers for Each Air Flow
- Could Reach All Operating Points with 2 VFD's

Case Study 1 – Fan Performance

Case Study 1 – Fan Laws

- Fan Air Flow Rate Varies with Fan Speed Ratio • $Q2 = Q1 \times (N2 / N1)$
- Fan Pressure Varies with Square of Speed Ratio • $P2 = P1 \times (N2 / N1)^2$
- Fan Input Power Varies with Cube of Speed Ratio
 - $H2 = H1 \times (N2 / N1)^3$

This 3rd Law Answers Why Speed Control Saves So Much Energy

Case Study 1 – HP vs. Blower Speed

SCFM	RPM	HP	% Full RPM	% Full HP
16,900	3,357	571	100%	100%
14,002	3,300	511	92%	90%
12,402	3,170	441	89%	77%
10,950	3,090	393	87%	69%
9,662	3,025	351	85%	62%
7,754	2,960	298	83%	52%
4,696	2,925	225	82%	39%
Source = Gardner Denver Fan Curves				7.1 psi

Case Study 1 – Air Demand Profile

Hours / Day	SCFM	Blower RPM			
		VFD's		Constant Speed	
		Blower 1	Blower 2	Blower 3	Blower 4
3	12,084	3150			
2	22,472	3150	3150		
7	31,270	3225		3570	
12	48,336	2925	2925	3570	3570
0.7	72,504	3560	3560	3570	3570
500 HP Blower Not Shown					

Case Study 1 – Air Demand vs. HP

Hours / Day	SCFM	HP per Blower			Total HP	
		VFD's		Constant Speed		
		Blower 1	Blower 2	Blower 3	Blower 4	
3	12,084	430				430
2	22,472	402	402			804
7	31,270	471		675		1,146
12	48,336	255	255	675	675	1,800
0.7	72,504	670	670	675	675	2,690
500 HP Blower Not Shown						

Case Study 1 – Annual Energy Cost

Month	kWh	Energy Cost	kWh	Energy Cost
	Inlet Valve	e Throttling	2 VI	-D's
January	807,025	\$ 60,285	736,681	\$ 55,030
February	727,650	\$ 54,355	663,726	\$ 49,580
March	807,814	\$ 60,344	737,711	\$ 55,107
April	779,434	\$ 58,224	710,886	\$ 53,103
May	879,286	\$ 65,683	709,436	\$ 52,995
June	851,698	\$ 63,622	688,436	\$ 51,426
July	880,038	\$ 65,739	711,262	\$ 53,131
August	878,834	\$ 65,649	708,340	\$ 52,913
September	851,071	\$ 63,575	686,914	\$ 51,312
October	878,784	\$ 65,645	708,218	\$ 52,904
November	778,714	\$ 58,170	709,946	\$ 53,033
December	804,657	\$ 60,108	733,593	\$ 54,799
TOTALS	9,925,005	\$ 741,398	8,505,147	\$ 635,334
Annua	al Savings with 2	2 VFD's	1,419,858	\$ 106,063

Case Study 1 – Study Results

Blower Curves Defined Operating hp and kW	
Cost per kWh	\$0.075
Energy Cost Inflation	4%
Install Cost of Two VFD's	\$497,000
Annual kWh with Throttling	9,946,000
1 st Year Energy Cost with Throttling	\$742,000
Annual kWh with Two VFD's	8,512,000
1 st Year Energy Cost with Two VFD's	\$635,000

Case Study 1 – Study Results

- □ 1st Year Gross Energy Savings Using 2 VFD's
 - 1,434,000 kWh
 - \$106,000
 - 14% Reduction
- VFD Rejected Heat at Full Load = 63 mBTU
- □ 1st Year Cooling Costs for VFD's
 - 107,015 kWh
 - \$8,782

Case Study 1 – VFD's vs. Throttling

- □ 1st Year Net Savings
 - 1,326,985 kWh
 - \$97,218
 - 13% Reduction
 - Equivalent to 915 Metric Tons of CO₂ Emissions _

Case Study 1 – Payback Calculation

Year	Investment Less Savings + 5% / yr.	Electric Savings + 4% / yr.	Balance End of Year
0	\$ 497,000	\$ 97,282	n/a
1	\$ 521,850	\$ 101,173	\$ 420,677
2	\$ 441,711	\$ 105,220	\$ 336,491
3	\$ 353,316	\$ 109,429	\$ 243,887
4	\$ 256,081	\$ 113,806	\$ 142,275
5	\$ 149,389	\$ 118,358	\$ 31,031
6	\$ 32,583	\$ 123,092	(\$ 90,510)

Payback Period is 5.3 Years

Case Study 1 – Conclusion

- VFD's vs. Inlet Valve Throttling
 - VFD Speed Control is Economically Justified
 Even If Inlet Valve Throttling Already Installed
- Blowers Operate Closer to Surge Line
- Savings Produces \$100,000 + Every Year After Year 6
- Savings Calculated Without Utility Incentive

Case Study 2 – City of Willoughby WWTP

Conventional Activated Sludge Process
 9 MGD

Case Study 2 – City of Willoughby WWTP

- Performed a Level 1-1/2 Audit
 - Three Hour On-site Visit
 - No Cost to Client
 - Palmer Conservation Consulting & CT
- Looked for Readily Apparent Savings Opportunities
- Developed Some ECM and Calculated Payback Not Normally Part of Level 1 Audit

Case Study 2 - Opportunities

- Savings Opportunities
 - Lighting and Lighting Controls Throughout Plant
 - Administrative Building HVAC Roof Top Units
 - Administrative Building HVAC Controls
 - Power Distribution Utility Electric Service Secondary Metering to Primary Metering
 - Aeration Blower Dispatch with DO Monitoring

Case Study 2 - Lighting

- Lighting Upgrade
 - Plant Previously Replaced 50% of T12 Fluorescent
 - Replace Remaining T12's with T8's
 - Applied Utility Incentive -- Minimal
 - Calculated 6 Year Payback
- Lighting Controls
 - Occupancy Sensors with Manual Override
 - Calculated 6 Year Payback

Case Study 2 - Buildings

HVAC in Administrative Building

- Replace Singular RTU with Two Separate Units to Serve Areas of Different Needs
- Replace Building Controls
- Approximately \$60,000 in Cost
- Calculated 10 Year Payback

Case Study 2 – Electric Rate Schedule

- Existing Electric Utility Service
 - 13.2 kV Service from Utility
 - 13,200 480 volt Transformers
 - Billing Metering CT's on 480 volt Bus (Secondary)
- Proposed Service
 - Purchase Transformer from Utility Company
 - Move Metering to 13.2 kV Bus (Primary Metering)
 - Savings Due to Lower Electric Rate Schedule

Case Study 2 – Electric Rate Schedule

- Primary Metering Rate is Lower but Has Risks
- Cost to Purchase Transformer and Primary Metering CT's & PT's
 - \$189,000
- Annual kWh Savings = 0
- □ Annual Electric Cost Savings = \$25,000
- Simple Payback = 7.6 Years

Case Study 2 – Energy Conservation Measures

Energy Conservation Measures	Cost	Annual Savings	Payback – Yrs.
Lighting	\$25,100	\$4,200	6.0
HVAC Modifications	\$43,200	\$4,300	10.0
HVAC Controls	\$27,000	\$2,500	10.8
Power Distribution	\$189,000	\$25,000	7.6
Other	\$27,000	\$1,000	27.0
TOTAL	\$311,300	\$37,000	8.4
Future Study	DO Controls / Aeration Blower Controls		

Case Study 2 – Future Study

- Aeration Blower Dispatch Optimization
- □ 4 200 hp Turbo Blowers
- Manual DO Readings
- Manual Dispatch of Blowers
- Question If 160% of Blower Capacity is Needed, What is Optimum Configuration?
 - 2 Blowers @ 80% or 1 Blower @100% + 1 @ 60%
 - Other Combination(s) ?

Renewable Energy

- Consider Renewable Energy Alternatives
 - Co-Generation
 - Photovoltaic
 - Wind Turbine
- Usually Requires Outside Funding
 - Often Partially Available
- City of Delphos WWTP
 - Installed 83 kW Photovoltaic 100% Outside Funding

Summary

- Energy Costs Will Continue to Increase
- Perform Level II or Level III Audit
- Make Energy Conservation an Integral Part of Plant Operations and Future Planning
- Select Efficient Equipment
- Install Energy Monitoring Equipment
- Savings Opportunities Exist

Thank You

