Arkea®: A Green Technology for Wastewater Treatment, Residuals Management, and Pathogen Reduction

OWEA ANNUAL MEETING
JUNE 20, 2012

Michael H. Gerardi, Wastewater Biologist, ArchaeaSolutions, Inc.
Steve C. Owens, P.E., Vice President, ArchaeaSolutions, Inc.
I. Introduction
Science-focused company

Discovered how to use *Archaea* organisms to resolve environmental problems

Since 2000, *Archaea* containing bio-systems have worked in hundreds of municipal and industrial plants, including wastewater treatment, food processing, chemical plants, and petroleum refineries

Ongoing work in North America, Europe, and Africa
ArchaeaSolutions, Inc.

- Scientists, Engineers, and Wastewater Professionals Specializing in Plant Optimization, Troubleshooting, Process Consulting, and Bioaugmentation Strategies
- Usual approach is to evaluate problem and situation, perform lab analysis, complete pilot program, and undertake full scale work
II. What are Archaea

Archaea – Key Driver in Waste Stabilization
Archaea not bacteria

- Separate domain of life forms
- Characteristics of **Archaea** compared to bacteria
 - Larger diversity of enzymes
 - Higher metabolic rate
 - Shorter generation time
 - More tolerant of extremes
 - Larger surface-to-volume ratio
Archaea and bacteria: syntrophic relationship

Archaea degrade wastes that bacteria cannot degrade

Archaea solubilize wastes to substrates for bacteria

Less polluting wastes, non-polluting wastes, decreased sludge production
Additional benefits of syntrophic relationship

- Increase in numbers of higher life forms
 - Ciliated protozoa
 - Rotifers
 - Free-living nematodes
- Increase in coating action — removal of fine solids from bulk solution
- Increase in cropping action — removal of dispersed growth from bulk solution
III. Archaea Bioaugmentation

A. Waste Stabilization
B. Process Optimization
C. Pathogen Reduction
A. Waste Stabilization

- Solubilize colloidal and particulate cBOD and degrade solubilized cBOD to non-polluting wastes and less polluting wastes
- 1 lb. of non-soluble cBOD in and not solubilized is 1 lb. of solids out
- 1 lb. of non-soluble cBOD in and solubilized is 0.6 lb. of solids out under aerobic conditions

- RESULT: Reduction in solid management costs (Energy, Dewatering, Transportation, Disposal)
Activated Sludge: Transformation of cBOD (Sludge Yield)

<table>
<thead>
<tr>
<th>Electron Acceptor</th>
<th>Sludge Yield per lb of cBOD degraded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen, O_2</td>
<td>~0.6</td>
</tr>
<tr>
<td>Nitrate, NO_3^-</td>
<td>~0.4</td>
</tr>
<tr>
<td>Sulfate, SO_4^{2-}</td>
<td>~0.04 - 0.1</td>
</tr>
<tr>
<td>cBOD, CH_2O</td>
<td>~0.04 - 0.1</td>
</tr>
</tbody>
</table>
Bacterial Growth (Sludge Production) Curve

- Increased MCRT
- Increasing Bacterial Population (MLVSS)
- Synthesis of cBOD
- Uptake of soluble cBOD
- LOG
- Endogenous/Basal
Activated Sludge/Microbial Wastes

- Non-polluting wastes
 - Water (H₂O)
 - Carbon dioxide (CO₂)

- Less polluting wastes
 - Ammonium (NH₄⁺)
 - Sulfate (SO₄²⁻)
 - Orthophosphate (H₂PO₄⁻/HPO₄²⁻)
 - Acids, alcohols, aldehydes, ketones including VFA, VNC, VSC
Nitrogen is removed by *Archaea* through anaerobic ammonia oxidation (ANAMMOX).

ANAMMOX is the oxidation of ammonium to nitrite (NO_2^-) and then the removal of molecular nitrogen (N_2) from nitrite to the atmosphere by combining nitrite and ammonium under an anaerobic condition.

ANAMMOX requires less dissolved oxygen and is not dependent upon carbon feed.
ANAMMOX reactions

\[
2\text{NH}_4^+ + 2\text{HCO}^- + 1.5\text{O}_2 \quad \longrightarrow \quad \text{NH}_4^+ + \text{NO}_2^- + 2\text{CO}_2 + 3\text{H}_2\text{O}
\]

Step 1

\[
\text{NH}_4^+ + \text{NO}_2^- \quad \longrightarrow \quad \text{N}_2 + 2\text{H}_2\text{O}
\]

Step 2
Key role in sulfur cycle

- Extremophilic Archaea domain are the source of strong sulfide-oxidizing bacterium such as Sulfolobus which break down hydrogen sulfide or its salts.
Control of malodors

- Compete with sulfate-reducing bacteria (SRB) for substrate
- Degrade VFA, VNC, VSC
- Release wastes that inhibit SRB
- Prevent conversion of HS\(^-\) to H\(_2\)S
 - Assimilate HS\(^-\) as sulfur nutrient
 - Oxidize HS\(^-\) to S\(^\circ\)
B. Process Optimization

- Increase number of cBOD-removing microbes without increasing MCRT
- Increase number of nitrifying microbes without increasing MCRT
Control of foam

- Foam
 - Biological
 - Degrade lipids
 - Degrade polysaccharides
 - Chemical
 - Degrade oils and grease
 - Degrade surfactants
Provide resistance to toxic wastes

- Degrade organic wastes such as phenol
- Safely bio-accumulate heavy metals
Heavy metal “attack” on microbial cell

- Fibril
- Cell Wall
- Cell Membrane
- Polysaccharide Coat
- Genetic Material
- Enzymes
- Zn$^{2+}$
Methane production

- Larger variety of methanogens
 - Larger variety of enzymes
 - Larger diversity of wastes that can be converted to methane (CH$_4$)
C. Reduction in *E. coli* and pathogens via *Archaea* augmentation

- Reduction in sludge age or mean cell residence time (MCRT)
- Competition for soluble nutrients and soluble substrate
- Adsorption to floc particles or biofilm
- Increase in cropping action by ciliated protozoa and metazoa
- Increase in coating action by ciliated protozoa and metazoa
- Reduction in chlorine demand
Competition for soluble nutrients and soluble substrates

- *E. coli* and some pathogens such as *Klebsiella* reproduce in wastewater!

- Because *Archaea* have a larger surface-to-volume ratio than *E. coli* and most pathogens, *Archaea* can out-compete *E. coli* and most pathogens for nutrients and substrates.

- Therefore, reduction in numbers of *E. coli* and some pathogens occurs!
Adsorption to floc particles or biofilm

- Archaea are adsorbed (flocculated) to floc particles or biofilm and remain for long sludge retention time (SRT) in the treatment process.

- Flocculation reduces the number of dispersed bacterial cells including E. coli and pathogens that are present in the secondary effluent!
Mature floc particle

Bulk solution has:
- Insignificant dispersed growth
- Insignificant particulate materials
Testate, free-swimming ciliates, *Coleps*
Because *Archaea* are able to reduce significantly the quantity of cBOD and nBOD (ammonia) in the secondary effluent, the chlorine demand for disinfection of *E. coli* and pathogens is reduced.

Therefore, the existing level of chlorine feed to the effluent is more effective.
IV. Arkea® Field Applications
ArchaeaSolutions, Inc. produces Arkea® substrate containing a proprietary blend of Archaea organisms and other selected microbes.

Several species of Archaeal methanogens have been identified in Arkea® through gene sequencing analysis.
- **Archaea** is the key driver
- Other supporting microbes and factors
 - Bacteria
 - Fungi
 - Nutrients/micronutrients
 - Job specific microbes
Ohio and Indiana Installations - Sludge Reduction and Operational Cost Savings
After the addition of Arkea® in 2009, the lbs. of WAS declined.

Sludge yield coefficient (lbs. WAS/lbs. BOD drop) also decreased.

<table>
<thead>
<tr>
<th>Year</th>
<th>WAS (lbs.)</th>
<th>Sludge Yield (lbs. WAS / lbs. BOD drop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>15,806</td>
<td>1.07</td>
</tr>
<tr>
<td>2009</td>
<td>11,581</td>
<td>.95</td>
</tr>
<tr>
<td>2010</td>
<td>9,969</td>
<td>.80</td>
</tr>
</tbody>
</table>
Operational Impact - OH

- When OH project began, plant operated all four available sludge digesters.
- Due to impact of Arkea®, reduced operation to only two sludge digesters.
- Confirmation of reduced sludge yield.
Lagoon Biological Dredging - OH

Before: Note dark gray color

After: Note green color and improved appearance
TSS and VSS Reductions - OH

TSS

<table>
<thead>
<tr>
<th>Date</th>
<th>%TSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/2/2010</td>
<td>3</td>
</tr>
<tr>
<td>7/21/2010</td>
<td>2.5</td>
</tr>
<tr>
<td>9/22/2010</td>
<td>2</td>
</tr>
</tbody>
</table>

VSS

<table>
<thead>
<tr>
<th>Date</th>
<th>%VSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/2/2010</td>
<td>62</td>
</tr>
<tr>
<td>7/21/2010</td>
<td>56</td>
</tr>
<tr>
<td>9/22/2010</td>
<td>52</td>
</tr>
</tbody>
</table>
Municipality with a 24/7 slaughterhouse upstream could not cost effectively manage their bio-solids.

Dark brown area is >100”. Orange is 80 – 100”. Gold is 60 – 80”. Dark yellow is 40 – 60”. Yellow is 20 – 40”. Vanilla is <20”.

Fraction of cost of mechanical dredging.
Hydraulic Volume Increase - Texas Lagoon
NH3 Compared to 001 Outfall Limits

- Monthly Avg
- Daily Max
- 001 Monthly Avg Limit
- 001 Daily Max Limit
Nitrate Reduction
Explosives Manufacturer - AR

NO₃ Compared to 001 Outfall Limits

- Monthly Avg
- Daily Max
- 001 Monthly Avg Limit
- 001 Daily Max Limit
Poultry Processing WWT Lagoon - GA
Total Nitrogen and Total Phosphorus Reduction

Before Arkea® Treatment

After Arkea® Treatment
Poultry Processing
Total Nitrogen - GA

Total Nitrogen: > 50% reduction
Poultry Processing
Total Phosphorus - GA

Total Phosphorus: > 50% reduction
Phosphorus Field Results - FL

- Phosphorous reduction on dairy farms in central Florida
- Normally the dairy lagoons would be filled with bio-solids and often have a bio-solid crust on top.
Sweden Refinery - Acid Tar By-Product Reduction, Detoxification, and Re-Use
Ammonia Reduction -
London 2012 Olympic Stadium
Bioresmediation - Underground Petro Storage Tank - BTEX Reduction
V. Summary
Process Benefits of **Arkea®** Bioaugmentation

- More rapid degradation of wastes
- Reduction of waste by-products
- Reduction of sludge yield
- Reduction in concentrations of ammonia, nitrate, phosphorus, TKN, H$_2$S, and sulfides
- Reduction in toxicity
- Overall improvement of effluent water quality

Arkea® are proven safe in the environment.
Operational Cost Savings

- **Arkea®** substrate improves operating profit.

- The operational cost savings will come from the following areas:
 - Typically 25-50% reduction in sludge yield
 - Reduced sludge handling and disposal costs
 - Decreased energy costs
 - Decreased chemical usage
 - Improved overall plant efficiency and operation

- **Arkea®** substrate does all this in a **cost effective** manner
Scientists, Engineers, and Wastewater Professionals
Specializing in Plant Optimization, Troubleshooting,
Process Consulting, and Bioaugmentation Strategies

100 Lloyd Ave., Suite D, Tyrone, GA 30290
770-487-5303
www.archaeasolutions.com

Low Cost “Performance-Based” Arkea® Trials Available
Call us today to schedule a consultation and site visit!