## **Chlorophyll Analysis**



Dennis L. Hansen M.Sc. Aquatic Biologist NEORSD





## Organization of Presentation

- •What is Chlorophyll?
- •Why Test For It?
- Types of Algae
- Detection Methods
- Summary

## **Quick Definitions**

- Chlorophyll is a magnesium based green protein that turns blue and red light into electron movement, which turns water and carbon dioxide into sugar.
  - There are a few types of chlorophyll: A, B, C, D & F.
  - Most labs focus on the most common type, A.
- Phaeophytin is Chlorophyll without the magnesium.
   "Dead Chlorophyll"
  - If you want to stump your biologist, ask them for their phaeophytin numbers.

## More Definitions

- **Bluegreen Algae (Cyanobacteria)** are photosynthetic bacteria. Some produce toxins and some fix N<sub>2</sub> from the air.
- **Diatoms** are single celled algae that have a silica shell
- Green algae are filamentous or flagellated algae
- **Dinoflagellates** are single celled algae that cause red tides in marine environments







## Why are chlorophyll A levels important?

- Nutrient level indicator
  - Chlorophyll A levels increase with nutrient levels
- Indicates water clarity total suspended solids, turbidity
- Chlorophyll A is half of the story
  - Different nutrient levels will support different types of algae.
  - Different Algae will support different aquatic consumers
- Harmful Algal Blooms
  - Toxic algae
  - Oxygen depletion
  - Aesthetics and increased bacteria levels at beaches

## Lake Erie Has Algae

Is this Fish food or Fish poison

Chlorophyll A alone will not tell us

## About The Algae: Diatoms

- The Golden Algae-brown slippery rocks
- Single celled and filamentous
- Cell wall is made of 2 silica shells (like a pill box)
- Store food as lipids, not starch
  - Great source of food for fish fry and zooplankton
- Diatom presence is indicative of clean and clear lakes
- Diatomaceous earth





## About The Algae: Green Algae

- Filamentous, single celled and flagellated
- Store food as starch
- Cell wall is made of cellulose, like land plants
- Good source of food for fish fry and zooplankton
- Green algae are found in all environments
- Can cause severe algal blooms



## About The Algae: Dinoflagellates

- Single celled and flagellated
  - Two flagella, one around the waist and one on the end
- Found in abundance in impaired waters.
- Cell wall is made of rigid plates
- Some are not photosynthetic
- In marine environments, they make coral.
- During a bloom, they cause red tide events







## About The Algae: Cyanobacteria

- Bluegreen algae, It's photosynthetic bacteria
- Some can fix N2
- In waters with high phosphorus levels, N2 fixing cyanos will outcompete the green algae and diatoms
- A few strains are toxic
  - Generally they are difficult to digest
- Cell wall is made of peptidoglycan.
- Nutrient sumplement







## Toxins related to freshwater blue green algae

| Neurotoxins    | Hepatoxins           | Skin Toxins |
|----------------|----------------------|-------------|
| Anabaena       | Microcystus          | Lyngbya     |
| Planktothrix   | Planktothrix         |             |
| Aphanizomenon  | Aphanizomenon        |             |
| Lyngbya        | Cylindrospermopsis   |             |
| Not every stra | ain can produce toxi | ns          |
|                |                      |             |

### Toxic Algae Can Be a Public Hazard

- We have all heard of fish kills caused by cyanobacteria
- Every year, hunting dogs die from water that contained cyanotoxins.
- In 2002, two boys in Madison, WI died after swimming in, and ingesting water from a golf course pond.

## The presence of N<sub>2</sub> fixing Heterocysts are indicative of High phosphorus levels

- High phosphorus levels will select for blue-green algae that can fix nitrogen from the air and possibly be toxic
  - Anabaeana
  - Oscillatoria
  - Aphanizomenon









#### **Algal Blooms and Recreation**

 Non toxic algal blooms also promote bacteria growth, reduce water quality, and discourage beach use.



## Why Measure Chlorophyll A?

- Knowing the Chlorophyll A and phaeophytin levels can give us a general idea about the health of our system.
- There are two accepted techniques for measuring Chlorophyll A.

# Chlorophyll Detection Techniques Spectrophotometric Technique



## Fluorometric Technique



## Spectrophotometric Technique

#### • For water samples with high levels chlorophyll.



Red Light (~665nm) into the Sample Red Light (~665nm) into the Detector

http://toolboxes.flexiblelearning.net.au/demosites/series10/10\_03/6lt/6lt3/htm/6lt3\_1\_2e.htm

## **Equipment for Spec Method**

- Spectrophotometer –
- Tissue Grinder
- Centrifuge
- Dark room
- 47 mm glass fiber filters
- Forceps
- Filtration manifold

- Filtration funnels and bases
- 15 mL conical tubes
- Volumetric or autopipettes w/tips
- Aluminum foil
- Freezer (-30 Celcius)

## **Reagents and Standards**

- 90% acetone
- DI water
- Standards
  - Calibration
  - ICV independent calibration verification
  - CCV continuing calibration verification
  - CCB continuing calibration blank

- Spinach
- Standards PPM

## **Overview of the**

## Spectrophotometric Method

- US EPA method 150.1
- The Spec method is used when chlorophyll levels are very high.
- Step 1: Collect water sample
- Step 2: Filter known quantity of water onto a 47 mm glass fiber filter
- Put the filter in a known volume of an acetone solution and grind the filter with a tissue grinder.
  - This releases the chloroplasts from the algae and filter





## **Overview of the**

## Spectrophotometric Method

- In a darkened room
- Centrifuge the sample to settle the filter and debris and aspirate the supernatant
  - Or just pour the solution through a paper filter
- Deliver a portion of the chlorophyll solution into a cuvette and place the sample into the spectrophotometer





## **Overview of the**

## Spectrophotometric Method

- Read the absorbance at 665 nm
- Compare this value to your standard curve and account for the dilution factors.
- The method to manually calculate the concentration is in US EPA method 150.1

#### Most labs use the Fluorometric method

## Fluorometric Technique

• More sensitive than spectrophotometric techniques for low levels of chlorophyll.



#### Blue Light (440nm) into the sample

http://www.noc.soton.ac.uk/soes/teaching/courses/soes3018/2011/Group10/fluorometer.jpg

## Equipment for Laboratory Fluorometric Method

- Sample preparation is the same as the spec method
- The fluorometer is more sensitive, so a very green sample may need to be diluted.
- Most fluorometers today will read chlorophyl out in mg/L.





## **Equipment for Field Fluorometric Method**

- Fluorometer attached to a sonde
- Technician
- The sonde will read out the concentration
- This method is not reliable when algae physically floats in mats.





## Summary

- Chlorophyll A levels
  - Give us a snapshot of the algal biomass in the water
  - This correlates with the nutrient load
- Chlorophyll A is only half of the story
  - The types of algae can tell us if our system is potentially toxic
  - If there is too much P or N
- Not all strains of cyanobacteria are toxic
- With minimal training, anyone that can microscopically analyze a sludge sample can analyze algae in a water sample.