Energy Savings with High Rate Aeration

Mark R. Greene, Ph.D.
Senior Technical Director
O’Brien & Gere
Today’s Presentation

Objective

Frank E. Van Lare WWTP, Monroe County, NY

Oxygen transfer efficiency

Aeration upgrade

Side-by-side testing

Performance and measured savings

What these results mean
Maximizing Energy Saving with Aeration Upgrade

- Convert surface mechanical (60, 2-speed units) to **fine bubble** aeration
- Predicted saving of **7.4 GWh/yr** and **$550,000/yr**
- **Enhance** operability and process flexibility
- Minimal **noise** emission
- Maintain **compliant** plant operations during construction
- **Phased** approach with consideration of primary tank improvements
135/200/630 MGD Treatment Plant

- **Preliminary** Treatment (630 MGD)
 - Screen and grit removal

- **Primary** Treatment (200 MGD)
 - East/West Clarifiers

- **Secondary** Treatment (135 MGD)
 - 20 Aeration Tanks
 - 4 Quadrants of 5 Tanks
 - 6 Final Clarifiers

- **Sludge** Thickening
 - 8 Gravity Units

- **Sludge** Dewatering
 - 4 Centrifuges
Aeration Tanks

- **High Rate Activated Sludge**
 - 1.5-2.5 hours HRT
 - 14 to 18 tanks in service (varies seasonally)
 - Monitor for nitrate and control F:M to minimize

30 manual gate valves
Aeration Basis of Design

Flow
(PE, RAS, Recycle)

- Max: 290 MGD
- Avg: 150 MGD
- Min: 95 MGD

BOD$_5$
Load

- Max: 180,000 lb/d
- Avg: 95,000 lb/d
- Min: 50,000 lb/d
Old Aeration Tank Configuration

- **Field measurements**
 - Structural integrity
 - Complete mix
 - Oxygen transfer efficiency
 - 1.8 lb/hp-hr
 - 61% of clean water (α)
Aeration Efficiency in High Rate Systems

- **High Rate Systems**
 - Low oxygen transfer efficiency
 - Fine bubble has less turbulence
 - Interference of soluble BOD (surfactants)

- **Solution**
 - High sBOD gradient
 - Tank configuration

- **Surfactant molecules form a rigid surface on bubbles**
- **Aeration difficulty decreases with smaller bubbles**
 - Lower Alpha for fine bubble than for coarse bubble

- **Mechanical aeration**
 - Surfactants reduce surface tension resulting in formation of smaller liquid droplets
 - Increases available surface area for transfer
 - Alpha factors can be greater than 1.0
A Solution

- Add anaerobic selector
- Modify configuration to plug flow
 - Extend piping
 - Close 2 effluent sluice gates
Phasing Aeration Tank Upgrades
Phase 1 Aeration Tanks
Tank Modifications – Level Bottom

11% volume reduction
Tank Modifications – Install Over/Under Baffles
Ceramic Disks
Ceramic Disks

Sanitaire 9-inch ceramic diffusers
- 898 disks, 3 zones per tank
- 0.5 – 4 scfm per diffuser

Tank 1
1,138 disks
4 zones
Blowers

APG-Neuros Single-Stage Centrifugal Blowers
- 350 HP, 10,500-21,000 rpm
- 5,250 scfm @ 12.5 psig
Side-by-Side Testing – Does the Selector Improve OTE?

Fine Bubble w/ and w/o Selector

Test Parameters
- Flow: liquid and air
- MLSS/MLVSS
- Filtered BOD$_5$
- Dissolved oxygen

Results Indicator
- Airflow usage
Design average = 9.4 MGD
Tank 1 actual average = 8.1 MGD
Tank 2 actual average = 8.2 MGD
BOD$_5$ Load per Aeration Tank

Design average = 5,900 lb/d
Actual average = 6,100 lb/d
MLVSS per Aeration Tank
Aeration Tank Effluent Filtered BOD$_5$ Concentration
Airflow per Aeration Tank

Average Airflow
Tank 1 (no sel) = 1,950 scfm
Tank 2 (sel) = 1,630 scfm

Selector improves OTE by 16%
DO Probe Relocation

Tank 1

Tank 2

© 2013 O’Brien & Gere
Airflow per Aeration Tank (after DO probe relocation)

Average Airflow
Tank 1 (no sel) = 2,700 scfm
Tank 2 (sel) = 1,900 scfm

Selector improves OTE by 29%
DO Profiles and Probe Location

Selector eliminates DO sag at head of tank
Rebate for Saving Energy

- Initial estimate of 7.4 gWh/yr
- Application for 8.6 gWh/yr
 - $1,033,000 at $0.12/kWh saved
- Certified saving of 6.5 gWh/yr (value of $783,000)
 - Baseline usage = 16.1 gWh/yr
 - Blower usage = 8.3 gWh/yr
 - Selector mixing = 1.3 gWh/yr
- Phase 1
 - 4 Tanks modified (3 with selector)
 - 1.46 gWh/yr measured and verified saving (20% of 7.4)
What these results mean

- **Selector**
 - Does improve OTE
 - Stops DO sag at head of tank
 - Retrofit all aeration tanks with selector

- Modification in selector **mixing** can increase savings
 - Use influent flow kinetic energy for mixing

- **M&V** for Phase 1A and Phase 2
 - Improve airflow control
 - Lower system supply pressure
 - Stabilize blower start/stop cycles
 - Show the real electricity savings for this project
QUESTIONS?

Mark Greene / Mark.Greene@obg.com / (315) 956-6271
Mike Garland / MGarland@monroecounty.gov / (585) 753-7511
THANK YOU

Mark Greene / Mark.Greene@obg.com / (315) 956-6271
Mike Garland / MGarland@monroecounty.gov / (585) 753-7511
Energy Savings with High Rate Aeration

- NOTICE
 - This material is protected by copyright. No other use, reproduction, or distribution of this material or of the approaches it contains, is authorized without the prior express written consent of O’Brien & Gere.