Ventilation and Odor Control for Sewers and Tunnels

Lawrence H. Hentz Jr, P.E., BCEE Shahriar Eftekharzadeh, P.E., Ph.D,, PMP Rich Atoulikian, P.E., BCEE, PMP

Do You Know My Friend?

She Changed My Life

Athens, Greece WERF IRC, FL Sarasota, FL **Ypsilanti**, **MI** NGWRP, AZ 91st Avenue, AZ Ocotillo, AZ Avondale, AZ **Palm City/Tuscany** Hills, FL Seattle, WA **Iron Bridge, FL Dade County, FL** Sacramento, CA Hartford, CT East Bay MUD, CA **Rock Hill, SC** Yellowstone, WY PG County, MD Harford County, MD

Seneca, MD Patuxent, MD Mill Creek, MD **Broadwater**, MD Mont. Co. RCF Howard Co, MD Arlington.VA Alexandria, VA DC WASA Philly (x2), PA HRSD, VA(x4)Chez Liz, VA Dick Creek, GA Long Trail, VT NBC, RI **New England Fert** $\mathbf{MPW}, \mathbf{SC} (\mathbf{x4})$

H₂S and Olfactory Science

Analytical Chemistry And Chemical Engineering

Publications and Patents

...More Than 30 Articles on Odor Control

...Contributing Author to the WEF / ASCE Manuals of Practice ODOR CONTROL IN WASTEWATER TREATMENT PLANTS

...U.S. Patent Holder For Scrubber Technology

ODOR CONTROL IN WASTEWATER TREATMENT PLANTS

CITY WINNING ODOR WAR

City seems to have solved odor problem at lift station

SUNDAY, JANUARY 14, 2001

BY JUDY ODIERNA

iodierna/liherald.com

North Miami residents living along Northwest 125th Street and 11th Avenue can open their windows again.

www.herald.com

Their neighbor, a city sewage lift station, has finally cleaned ap its act

NORTH MIAMI

After years of trying to neutralize the lift station's foul odor with chemical deodorants and renovations, the city hired a company that created a \$90,000 biofiltration system.

The treatment center sucks

all the air in the space above the wet well in the pump and puts it through cubes that take away the odor.

"It's been up for three weeks, and the smell has gone away," said City Manager Lee Feldman.

The sewage pumping station is a busy one. It collects sewage

from the city's residential area and 20 other private pump stations, including the one from North Shore Medical Center in unincorporated Miami-Dade.

6 NORTH

"Residents have expressed their gratitude," said Councilman Ossmann Desir, who represents the Sunkist Grove district. "We have to wait a bit and a appear so quickly," he said. CARLES SALAS

observe and see if it will stay that way in the long term."

The Herald

New system gets

best results yet

Page 3

Feldman agrees and says the real test for the system will be the summer months.

"In the summer, there's high humidity, the air becomes saturated and the odor doesn't dis-

I Am Forever Grateful

Lessons Learned

Use Fundamental Scientific Principals

Use Best Available Information and Best Available Technology

Develop An Odor Control Plan That Can Adapt To Actual Conditions

An Ounce of Prevention

Odor Control Costs

Ventilation and Odor Control in Sewers and Tunnels

Forces Causing Airflow and Ventilation

Tools for Estimating Airflow and Pressurization

Technologies for Controlling Emissions of Odorous Compounds

Sewer Ventilation

Positive Pressure: 0.25 inches water column

Airflow Phenomenon in Gravity Sewers

Surface Drag Induces Airflow in Gravity Sewers Velocity Affects Stripping of Odorous Compounds

Pressure Buildup and Odor Release

Reduced Surface Drag and/or Head Space Causes Pressure Build Up and Potential Odor Release

Empirical Modeling Approach

1. Estimates V_{air} Using Empirical V_{air}/V_{water} ratios Pressure buildup Odor Release $V_{air (i)}$ $V_{air (i+1)}$ $V_{water (i+1)}$ d D Flatter Slope

d/D	V _{air} /V _{water}
< 0.1	0.15
0.1 - 0.2	0.25
0.2 - 0.48	0.35
0.48 - 0.75	0.60
0.75 - 0.85	0.35
> 0.85	0.15

Empirical Modeling Approach

2. Estimate $Q_{air} = V_{air} \times A_{head space}$

3. Compute $\text{Qdiff}_{air(i)} = \text{Q}_{air(i)} - \overline{\text{Q}_{air(i+1)}}$

Positive Qdiff_{air(i)} Means Pressure Buildup

City of Los Angeles Wastewater Collection System

- Complex system
- Serves > 4 million people
- ✤ Service area >600 sq. mi.
- ♦ 6,500 miles
- ♦ 140,000 maintenance holes
- 47 wastewater
 pumping plants
- ✤ 29 Satellite Agencies
- Conveys 450 MGD average daily flow

Overall Study Goal

Minimize Odor Issues in the City of Los Angeles Sewer System

Study Objectives

Identify sources and causes of odor

Establish effective means of reducing odor

Determine best location(s) and most effective technologies for Air Treatment Facilities (ATF)

Airflow Modeling Components and Purpose

Empirical Airflow Model Approximated airflow behavior Predicted locations of high pressures Measured pressures in field

Theoretical Airflow Model Computed airflow rates and air pressures Evaluated management techniques Extraction Sewer modifications

Identified best locations for air extraction and treatment

Sewer Pressure Data Collection

Results of Empirical Model

- Used LA Sewer Model to Locate Pressure Buildup Areas ("Hot Spots")
- Analyzed At Various Flow Regimes
- Provided Reasonable Prediction of Positive Pressure Locations and Airflow Rates
- Could Not Predict Pressures For Future Conditions
- ❖ Could Not Simulate Some Structures
 ➢ Drop Structures
 ➢ Air Extraction (Ventilation/Treatment)
 ➢ Siphons

Reasonably Analyzed the Existing System

Theoretical Model Principles

Drop Structure Physical Models

Air Model Input Data

Depth and Velocity (Hydraulic Model)

- Drop Structure Characteristic Curve (Physical Model)
- Field Pressure Data P_{av} and P_{max}

Model Calibration at Average Flow

Model Calibration Peak Hour Flow

Theoretical Model Summary

- Computed Airflow and Air Pressures
- Analyzed Various Flow Scenarios
- Simulated Drop Structures, ATF(s), Siphons (air jumpers), and Air Curtains, etc.

Model Can Be Used as a Good Planning and Decision- Making Too

Originally 8 Proposed Air Treatment Facility Locations

Final 4 Planned Air Treatment Facility Locations

NCOS ATF – 12,000 cfm 3 BTFs

Eliminated 4 Originally Planned ATFs at an Estimated Savings of \$50 Million Ventilation Model Can Help Control Odorous Emissions from Sewers and Tunnels

- A Sensitized Community Is Much More Difficult to Please
 - Creation of crusaders (lawyers) and loss of trust
 - Criteria for success go way up
- Ventilation Model Can Help Plan For Impacts
 - Predict location of hot spots
 - Assess impacts of drop structures
 - Analyze effects of extractions

Ventilation Model Approach

Plan

- Use HDR Ventilation Model and Utility Sewer Model
- Validate the model in the summer
- \succ Collect H₂S data
- Assess impacts of tunnel or sewer connections
- Assess emissions mitigation techniques (extraction, drop structures, etc)
- Output
 - > Air flow rates at hot spots under various flow regimes
 - Locations of most influence for air extraction
 - Options for control
 - > Estimates of H_2S concentrations

Most Important Odor Control Principles

Location, Location, Location Distance to nearest detector The number of detectors Direction of prevailing winds

- Control Technology Parameters
 Airflow rates
 H₂S concentration
 Emitted H₂S mass emission rate
- Most Often Need BACT
 PPM to PPB = 99.9% efficiency

From MOP No. 22, Pg. 107

Panel Response, %

Odor Control Scrubbers

Packed Tower Scrubbers

- •Gas Velocity Enhances Gas Phase Diffusion to Liquid Film
- Plastic Packing Creates
 Liquid Film (Transfer Area)
- Liquid Recirculation Allows
 Efficient Chemical Use
- Sump Allows Reaction Time
- Liquid Blowdown Important to Prevent Chemical Backpressure

Odor Control Scrubbers

Misting Scrubber

- Spray Contacts Odorous
 Chemicals in Gas Phase
- Spray Nozzles Creates
 Liquid Droplet (Transfer
 Area)
- Once Through Chemicals Maximizes Chemical Gradient
- Reaction Time Limited to Reactor Detention Time

H2S Speciation vs. pH

 $_{\rm pH}$

Cost Comparison of Caustic vs. Acid/Bleach Scrubber

H2S Concentration (ppmv)

Custom and Modular Biofilters

Bio Trickling Filters

Bio Trickling Filter

Practical Capacities of Odor Control Technologies

H₂S Concentration vs Odor Control Technology

Scrubbers - Any Flow and Any H₂S Concentration

Custom Biofilters - Any Flow & $H_2S < 25$ ppmv

Organic Biofilters - < 25 \text{ kcfm } \& H_2 S < 25 \text{ ppmv}

Synthetic Biofilters – Flow < 50 kcfm & $H_2S < 50$ ppmv

Biotowers – Any Flow & H2S > 10 ppmv

Carbon – Flow < 15 kcfm & H2S <25 ppmv

Note – Sometimes Carbon Becomes Biofilter

Recommendations

Establish Air Flow Rates and H₂S Concentrations

- Need Ventilation Model to Estimate Hot Spots and Air Flow Rates
- Look At H₂S Data and Predicted Hydraulic Regimes To Estimate Range of H₂S Concentrations
- Consider Location of Receptors and Determine Control Efficiency Requirements

Recommendations

- Use Estimated Flow and Estimated H₂S Concentrations to Establish Type(s) of Control Technologies Most Appropriate
- Evaluate Options and Costs Pick a Solution
- Develop a Plan for Higher Flow Rates and/or Higher H₂S Concentrations
 - Parallel Ducts and Controls
 - Multiple Stages or Technologies
- An Ounce is Worth a Pound of Cure

Thank You

Lawrence.Hentz@hdrinc.com

