Project ‘Driver’
Jackson Pike Wastewater Treatment Plant

- Two (2) Consent Orders (2002 & 2004)
- Signed with Ohio EPA to eliminate SSOs and reduce CSOs
- Development of Wet Weather Management Plan as a response
Project Background

Jackson Pike Wastewater Treatment Plant

Contract J210 included:

- **Rehabilitation of Secondary Clarifiers**
 - Replacement of Sludge Collection Mechanisms
 - Replacement of Inlet Structures
 - Addition of Scum Collection Systems
 - Upgrade of all clarifiers electrical and controls
Project Background
Jackson Pike Wastewater Treatment Plant

Contract J210 included:

- Modifications to Pumping Systems
 - Upgrade of Influent Pumps’ electrical/controls
 - Increase capacity of flushing water system
Project Background
Jackson Pike Wastewater Treatment Plant

Contract J210 included:

- Wet Weather Management Improvements
 - Increase RAS pumping capacity
 - Addition of step feed aeration capabilities
 - Replacement of aeration diffuser systems
 - Elimination of various plant hydraulic restrictions
 - Addition of flocculation baffles in secondary clarifiers
Facility Background
Jackson Pike Wastewater Treatment Plant

- Peak Hourly Design Flow: 165 MGD
- Total Average Daily Design Flow: 68.0 MGD
- A-Plant ADDF: 45.3 MGD
- B-Plant ADDF: 22.7 MGD
- Design RAS Rates: 30% Min. & 75% Max.
- A-Plant RAS Range: 14-34 MGD
- B-Plant RAS Range: 7-17 MGD
Design Objectives
Jackson Pike Wastewater Treatment Plant

- Increase RAS pumping capacity/capability to 75% of ADDF
- Provide a minimum RAS rate of 30% ADDF
- Maintain an equal RAS flow distribution
- ‘Draw-off’ equal volumes from each secondary clarifier
- Provide all components for a complete automated RAS system
Design Challenges
Jackson Pike Wastewater Treatment Plant

“Skewed Geometry”
- Four (4) Aeration Tanks (A-09 to A-12)
- Two (2) RAS Pumping Wells (B-Plant East & West)
- Five (5) Secondary Clarifiers (S-10 to S14)
West RAS Well
3 Clarifiers
10.2 MGD Firm

East RAS Well
2 Clarifiers
6.8 MGD Firm
The Design Process
Jackson Pike Wastewater Treatment Plant

- Evaluate clarifier ‘underflow’ to RAS Wells
- Consider Valve Modulation vs. Most-Open-Valve concepts for ‘underflow’
- Evaluate flow metering options
 - RAS Pumps’ Discharge to Aeration Tanks
 - Clarifier Underflow Piping to RAS Wells
- Consider AFDs for each pumping unit
- Develop an effective control strategy
The Design Process
Jackson Pike Wastewater Treatment Plant

- Select appropriate pumps that can meet RAS return rates (30 to 75% of ADDF)
- Determine range of flows for the various pump operating combinations by varying speeds
- Evaluate RAS underflow hydraulics to ensure equal ‘draw-off’ can be achieved
- Evaluate all existing piping and valves suitable for increased flow rates – upsize as necessary
The Design Process

Jackson Pike Wastewater Treatment Plant

Pump Design

- Size pump for max condition: two pumps operating at full speed, i.e. 10.2 MGD/2 = 5.1 MGD = 3,550 gpm (60 Hz)
- Determine system pumping head (TDH) at this condition
- Select pump/impeller based on this design point
- Determine minimum speed turndown for pumps
- Check one pump operation for NPSH and reduced speeds
- Evaluate the effect of a clarifier out of service
The Design Process
Jackson Pike Wastewater Treatment Plant
Utilized a Pump Hydraulics Program with AFD analysis (Fathom by Applied Flow Technologies)
The Design Process

Jackson Pike Wastewater Treatment Plant
The Design Solution
Jackson Pike Wastewater Treatment Plant

Pump Selection

- Three (3) horizontal centrifugal, solids handling pumps for each RAS Well - identical in size
- Two (2) pumps operating at full speed achieve maximum RAS return rate; one standby
- Capability to run all three (3) pumps if desired
- Turndown limit established for the pumps = 37 Hz (62%)
The Design Solution
Jackson Pike Wastewater Treatment Plant

Design Features For Automated RAS Control

- Modulating valves and flow meters on each underflow pipe from the secondary clarifiers
- AFD for each RAS pump to vary speed and expand range of RAS return rate
- Flow meters on pump discharge from each RAS Well
- Level instrumentation provided for each RAS Well
- All required electrical panels and inputs/outputs for complete automated control of clarifier draw-off and return pumping
The Design Solution
Jackson Pike Wastewater Treatment Plant

- Manual and Automatic Control Modes
- Design provided components for complete automated control and flexibility
- Control narratives, algorithms, programming, and screen shots developed with DOSD input
- “Automatic” = Prompt User to manually change settings (start/stop RAS pumps)
- Programming could be modified in future to revise operating strategies
The Design Solution
Jackson Pike Wastewater Treatment Plant

Manual Control

- Human Machine Interface
- Area Operator Interface Terminal
- AFD Panel
- Pumps’ Local Control Station
The Design Solution
Jackson Pike Wastewater Treatment Plant

Automatic Control Modes

RAS Flow Setpoint Control
- Human Machine Interface
- Area Operator Interface Terminal

Plant Flow-Pace Control
- Human Machine Interface
- Area Interface Terminal
The Design Solution

Jackson Pike Wastewater Treatment Plant

RAS Control – “Cheat Sheet”

<table>
<thead>
<tr>
<th>B-Plant West RAS Well Flow</th>
<th>Setpoints</th>
<th># of Pumps Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>>12.8 MGD</td>
<td></td>
<td>Not Recommended</td>
</tr>
<tr>
<td>10.3 to 12.8 MGD</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6.2 to 10.2 MGD</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3.5 to 6.1 MGD</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.1 to 3.4 MGD</td>
<td></td>
<td>Not Recommended</td>
</tr>
<tr>
<td>0 MGD</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
RAS Control Operation
Jackson Pike Wastewater Treatment Plant

Calculator is **ONLY** a tool to establish RAS flow setpoints for the operator.
When the pumps are running, but NOT achieving the flow setpoint this box will either indicate:
“Flow < Setpoint - Add a Pump” OR “Flow > Setpoint - Stop a Pump”
Operator must ‘manually’ start or stop a pump. Then, speeds will be adjusted automatically once the appropriate number of pumps are in operation.
Why utilize such a ‘manual’ operating approach?

- Abrupt inflow variations experiences at plant
- Potential to divert flow to Southerly WWTP
- Informed staff influences positive reactions to plant variations
- Operator flexibility
Project Completion
Jackson Pike Wastewater Treatment Plant

Before

After
Project Completion
Jackson Pike Wastewater Treatment Plant

Before

After
Project Completion
Jackson Pike Wastewater Treatment Plant

Before

After
Questions?

glhickman@columbus.gov
mike.rudisell@burgessniple.com