Return Activated Sludge Pumping System: From Conceptual Design To Daily Operation

City of Columbus The Division of Sewerage and Drainage Gary Hickman – Columbus DOSD Mike Rudisell – Burgess & Niple

Project 'Driver'

Jackson Pike Wastewater Treatment Plant

- Two (2) Consent Orders (2002 & 2004)
- Signed with Ohio EPA to eliminate SSOs and reduce CSOs
- Development of Wet Weather Management Plan as a response

DEPARTMENT OF PUBLIC UTILITIES

Project Background

Jackson Pike Wastewater Treatment Plant

Contract J210 included:

THE CITY OF

PUBLIC UTILITIES

- Rehabilitation of Secondary Clarifiers
 - Replacement of Sludge Collection Mechanisms
 - Replacement of Inlet Structures
 - > Addition of Scum Collection Systems
 - Upgrade of all clarifiers electrical and controls

Project Background

Jackson Pike Wastewater Treatment Plant

Contract J210 included:

- Modifications to Pumping Systems
 - Upgrade of Influent Pumps' electrical/controls
 - Increase capacity of flushing water system

DEPARTMENT OF PUBLIC UTILITIES

Project Background

Jackson Pike Wastewater Treatment Plant

Contract J210 included:

THE CITY OF

- Wet Weather Management Improvements
 - Increase RAS pumping capacity
 - > Addition of step feed aeration capabilities
 - Replacement of aeration diffuser systems
 - > Elimination of various plant hydraulic restrictions
 - > Addition of flocculation baffles in secondary clarifiers

Facility Background

Jackson Pike Wastewater Treatment Plant

- Peak Hourly Design Flow: 165 MGD
- Total Average Daily Design Flow: 68.0 MGD
- A-Plant ADDF: 45.3 MGD
- B-Plant ADDF: 22.7 MGD
- Design RAS Rates: 30% Min. & 75% Max.
- A-Plant RAS Range: 14-34 MGD
- B-Plant RAS Range: 7-17 MGD

DEPARTMENT OF PUBLIC UTILITIES

Design Objectives

Jackson Pike Wastewater Treatment Plant

- Increase RAS pumping capacity/capability to 75% of ADDF
- Provide a minimum RAS rate of 30% ADDF
- Maintain an equal RAS flow distribution
- 'Draw-off' equal volumes from each secondary clarifier
- Provide all components for a complete automated RAS system

BURGESS & NIPLE

DEPARTMENT OF

THE CITY OF

Design Challenges

Jackson Pike Wastewater Treatment Plant

"Skewed Geometry"

- Four (4) Aeration Tanks (A-09 to A-12)
- Two (2) RAS Pumping Wells (B-Plant East & West)
- Five (5) Secondary Clarifiers (S-10 to S14)

DEPARTMENT OF PUBLIC UTILITIES

West RAS Well 3 Clarifiers 10.2 MGD Firm

East RAS Well 2 Clarifiers 6.8 MGD Firm

Jackson Pike Wastewater Treatment Plant

- Evaluate clarifier 'underflow' to RAS Wells
- Consider Valve Modulation vs. Most-Open-Valve concepts for 'underflow'
- Evaluate flow metering options
 - RAS Pumps' Discharge to Aeration Tanks
 - Clarifier Underflow Piping to RAS Wells
- Consider AFDs for each pumping unit
- Develop an effective control strategy

DEPARTMENT OF PUBLIC UTILITIES

Jackson Pike Wastewater Treatment Plant

- Select appropriate pumps that can meet RAS return rates (30 to 75% of ADDF)
- Determine range of flows for the various pump operating combinations by varying speeds
- Evaluate RAS underflow hydraulics to ensure equal 'draw-off' can be achieved
- Evaluate all existing piping and values suitable for increased flow rates – upsize as necessary

Jackson Pike Wastewater Treatment Plant

Pump Design

- Size pump for max condition: two pumps operating at full speed, i.e. 10.2 MGD/2 = 5.1 MGD = 3,550 gpm (60 Hz)
- Determine system pumping head (TDH) at this condition
- Select pump/impeller based on this design point
- Determine minimum speed turndown for pumps
- Check one pump operation for NPSH and reduced speeds
- Evaluate the effect of a clarifier out of service

DEPARTMENT OF PUBLIC UTILITIES

Jackson Pike Wastewater Treatment Plant

Utilized a Pump Hydraulics Program with AFD analysis (Fathom by Applied Flow Technologies)

Jackson Pike Wastewater Treatment Plant

Jackson Pike Wastewater Treatment Plant

Pump Selection

- Three (3) horizontal centrifugal, solids handling pumps for each RAS Well - identical in size
- Two (2) pumps operating at full speed achieve maximum RAS return rate; one standby
- > Capability to run all three (3) pumps if desired
- Turndown limit established for the pumps = 37 Hz (62%)

Jackson Pike Wastewater Treatment Plant

Design Features For Automated RAS Control

- Modulating valves and flow meters on each underflow pipe from the secondary clarifiers
- AFD for each RAS pump to vary speed and expand range of RAS return rate
- Flow meters on pump discharge from each RAS Well
- Level instrumentation provided for each RAS Well
- All required electrical panels and inputs/outputs for complete automated control of clarifier draw-off and return pumping

PUBLIC UTILITIES

Jackson Pike Wastewater Treatment Plant

- Manual and Automatic Control Modes
- Design provided components for complete automated control and flexibility
- Control narratives, algorithms, programming, and screen shots developed with DOSD input
- "Automatic" = Prompt User to manually change settings (start/stop RAS pumps)
- Programming could be modified in future to revise operating strategies

Jackson Pike Wastewater Treatment Plant

Manual Control

- Human Machine Interface
- Area Operator Interface Terminal
- > AFD Panel
- Pumps' Local Control Station

DEPARTMENT OF PUBLIC UTILITIES

Jackson Pike Wastewater Treatment Plant

Automatic Control Modes

RAS Flow Setpoint Control

- Human Machine Interface
- Area Operator Interface Terminal

Plant Flow-Pace Control

- Human Machine Interface
- Area Interface Terminal

Jackson Pike Wastewater Treatment Plant

RAS Control – "Cheat Sheet"

B-Plant West RAS Well Flow Setpoints	# of Pumps Needed
>12.8 MGD	Not Recommended
10.3 to 12.8 MGD	3
6.2 to 10.2 MGD	2
3.5 to 6.1 MGD	1
0.1 to 3.4 MGD	Not Recommended
0 MGD	0

Jackson Pike Wastewater Treatment Plant

BURGESS & NIPLE

Jackson Pike Wastewater Treatment Plant

BURGESS & NIPLE

Jackson Pike Wastewater Treatment Plant

DEPARTMENT OF PUBLIC UTILITIES

Jackson Pike Wastewater Treatment Plant

BURGESS & NIPLE

Jackson Pike Wastewater Treatment Plant

DEPARTMENT OF PUBLIC UTILITIES

Jackson Pike Wastewater Treatment Plant

BURGESS & NIPLE

Jackson Pike Wastewater Treatment Plant

THE CITY OF COLUMBUS MICHAEL B. COLEMAN, MAYOR DEPARTMENT OF PUBLIC UTILITIES

Jackson Pike Wastewater Treatment Plant

N PIKE AS FLOW		
ROL		
EAST WET WELL RAS	10.0 MGD EAST RA	s FLOW 10.0 MGD
FLOW SETPOINT TO.O MIGD LAST RAS FLOW TO.O MIGD RAS FLOW SET POINT EAST RAS WELL LEVEL 5.0 FT CALCULATOR OK		
EAST RAS PUMP NO. 4	EAST RAS PUMP NO. 5	EAST KAS PUMP NO. 6
RUNNING 50 % 94.8 HRS 9STARTS	RUNNING 50 % 94.5 HRS 5 STARTS	STOPPED 0% <u>309.2 HRS</u> 5STARTS
RAS PUMP 4 AUTO MODE ACTIVE	RAS PUMP 5 AUTO MODE ACTIVE	SELECT AUTO MODE
STOP	STOP	START STOP
SELECT MANUAL MODE	SELECT MANUAL MODE	RAS PUMP 6 MANUAL MODE ACTIVE ADJUST SPEED
EXIT		

When the pumps are running, but NOT achieving the flow setpoint this box will either indicate: <u>"Flow < Setpoint - Add a Pump"</u> OR

"Flow > Setpoint - Stop a Pump"

Operator must 'manually' start or stop a pump. Then, speeds will be adjusted automatically once the appropriate number of pumps are in operation.

THE CITY OF COLUMBUS MICHAEL B. COLEMAN, MAYOR

Jackson Pike Wastewater Treatment Plant

Why utilize such a 'manual' operating approach?

- Abrupt inflow variations experiences at plant
- Potential to divert flow to Southerly WWTP
- Informed staff influences positive reactions to plant variations
- Operator flexibility

THE CITY OF

PUBLIC UTILITIES

Project Completion

Jackson Pike Wastewater Treatment Plant

Before

After

DEPARTMENT OF PUBLIC UTILITIES

Project Completion

Jackson Pike Wastewater Treatment Plant

Before

After

DEPARTMENT OF PUBLIC UTILITIES

Project Completion

Jackson Pike Wastewater Treatment Plant

Before

DEPARTMENT OF PUBLIC UTILITIES

Questions?

glhickman@columbus.gov mike.rudisell@burgessniple.com

