Optimizing Chemical Phosphorus Removal

> JB Neethling HDR Engineering

2013 Technical Conference and Exposition Ohio Water Environment Association (OWEA) Mason, OH June 18-20, 2013

Copyright 2013 HDR Engineering, Inc. All rights reserved.

Agenda

- Chemical Phosphorus Removal Basics
- Phosphorus Species
- Performance
- Opportunities for Optimization

Phosphorus Species Total P Dissolved P Particulate P Ortho P Soluble Inorganic Particulate Particulate Particulate Condensed P Acid Hyd P (Reactive P) **Organic** P **Reactive P** Organic P

HR

Fundamental Principle of Phosphorus Removal

There is no airborne (gaseous) form of phosphorus

Fundamental Principle of Phosphorus Removal

There is no airborne (gaseous) form of phosphorus

The exception

Convert to Particulate

Typical Chemical Treatment Opportunities

HR

Chemicals used for Phosphorus Precipitation

Chemical	Formula	Removal mechanism	Effect on pH
Aluminum Sulfate (Alum)	Al ₂ (SO4) ₃ .14.3(H ₂ O) M.W. = 599.4	Metal hydroxides	removes alkalinity
Ferric Chloride	FeCl ₃ M.W. = 162.3	Metal hydroxides	removes alkalinity
Poly Aluminum Chloride	$AI_{n}CI_{(3n-m)}(OH)_{m}$ $AI_{12}CI_{12}(OH)_{24}$	Metal hydroxides	none
Ferrous sulfate (pickle liquor)	Fe ₂ SO ₄	Metal hydroxides	Removes alkalinity
Lime	CaO, Ca(OH) ₂	Insoluble precipitate	Raises pH to above 10

Ferric Reaction with Phosphorus

The following illustrates a "<u>stoichiometric reaction</u>" of Fe⁺⁺⁺ with P

$FeCl_3 + H_3PO_4 = FePO_4 + 3HCl_3$

1 mole of Fe reacts with 1 mole P

→5.2 mg ferric per mg P→0.92 mg alkalinity per mg of ferric

Alum Reaction with Phosphorus

The following illustrates a "stoichiometric reaction" of Al^++ with P

$AI_2(SO_4)_3 \cdot 14H_2O + 2H_3PO_4 \rightarrow$

$\mathbf{2AIPO}_4 + \mathbf{3H}_2\mathbf{SO}_4 + \mathbf{18H}_2\mathbf{O}$

2 mole of Al reacts with 2 mole P (or 1 mole Al per mole P)

→9.6 mg alum per mg P→0.5 mg alkalinity per mg of Alum

Phosphorus Removal

Chemical Dose

Molar Dose Ratio From Tests

Slav Hermanowicz, Chemical Fundamentals of Phosphorus Precipitation, WERF Boundary Condition Workshop, Washington DC, 2006 HR

Exact Molar Ratios Versus Effluent Soluble P will Vary with Applications

- 1.5 to 2.0 Molar ratios for 80-98 percent removal
- 5.0 to 7.0 Molar ratios for higher efficiency and to reach low minimal soluble P concentrations
- Ratios are higher with PAC
- Factors that influence ratios
 - pH
 - Mixing method
 - Wastewater characteristics
 - Colloids and solids effect P-metal hydroxide complexations
 - Organic subtrates
 - Iron and aluminum can react with humic substances

Kinetics and Mixing of Phosphorus / Alum Reaction

Szabó et al. (2006) The Importance Of Slow Kinetic Reactions In Simultaneous Chemical P Removal, WEFTEC 2006

Photomicrographs of Phosphate Precipitants

What is

REALLY

Scott Smith, Wilfrid Laurier University

Fresh HFO

Young HFO

FePO₄ precipitant

After 4 days.

HR

HFO precipitan

After 2 years. Hard !!

Metal Hydroxide Removal of P Found for Ferric Addition

- Metal hydroxide formed
- Co precipitation of P into hydrous ferric oxides structure
 Fe(OH)₃, Fe(OH)₄⁻
- Surface complexation between P and metal hydroxide compounds
- Phosphorus and Iron share oxygen molecule:
- FeOOH + HOPO₃ = FeOOPO₃ + H_2O
- Hydroxide formation can be simply represented:

 $- \text{FeCl}_3 + 3\text{H}_2\text{O} => \text{Fe}(\text{OH})_3 + 3 \text{HCl}$

 $- AI_{2}(SO_{4})_{3}.14H_{2}O + 3 H_{2}O => 2AI(OH)_{3(s)} + 3H_{2}SO_{4}$

Closer Look at the Chemical Species

Phosphorus Speciation and Removal in Advanced Wastewater Treatment

L. Liu, D. S. Smith, D. Houweling J.B. Neethling, H.D. Stensel S. Murthy, Amit Pramanik and A. Z. Gu

Analytical Definitions of Phosphorus Species

- Filterable/nonfilterable (soluble?)
 - Passing through filter paper
 - Could be colloidal (very small particles)
- Reactivity to analytical procedure
 - Measure for orthophosphate
- Pretreatment (acid hydrylosis, digestion, etc)
 - Convert larger molecules to be reactive (orthophosphate)

Particulate Chemical Precipitant Measures as Reactive P

ЮR

Analytical Definition Based Phosphorus Fractions/Species

Nonreactive Phosphorus

Total P				
Dissolved P		Particulate P		
Sol Reactive P SRP	Sol NonReactive P SNRP	PRP	Particulate NonReactive P	
Total Deact	ivo D			
Total NonReactive P				

Analytical Definition Based Phosphorus Fractions/Species

Total P					
Dissolved P		Particulate P			
Sol Reactive P SRP	Sol Non Reactiv sNRP	re P			
Ortho P	Acid Hydrolyzable P	Sol Org	Part Chemical P	Part Organic P	
Colloidal P					

Secondary Effluent TSS adds to Particulate NRP

Filtered Effluent TSS adds to Particulate NRP

Pilot Study Results Illustrated Challenges at Limits of Technology

- No Treatment Technology Available for SNRP
- Portion May Not Be Bioavailable / Biodegradable

Neethling et al, 2007

Effluent P Fractions From Advanced Tertiary Treatment Processes

Lui, Gu, et al. (ongoing) Phosphorus Speciation and Removal in Advanced Wastewater Treatment, WERF Report

P fractions at Plant N

- sAHP seems to remain after BNR, associated with biomolecules
- Chemical addition converts sRP into pRP
- Chemical sRP (PO₄) removal relies pRP removal

Comparison of P fractions at Plant P

- Plant P and N are similar as (BNR+sedimentation +Filtration): composition very different
- DOP dominant soluble fraction; pAHP major particulate form
- Multi stage barrier remove TP to lower level

Opportunities for Optimization

Opportunities for Improvement

- Improve understanding of chemical kinetics
 - Dose relationships
 - Reuse formed metal hydroxides
- Enhance solids separation

Molar Dose Ratio From Tests

HR

Single Step Chemical Addition Requires High Dose

		<u>One</u> Step
P entering	mg/L	5
P residual	mg/L	0.1
Alum/P dose	mol/mol	5
Alum/P dose	mg/mg	48
Alum dose	mg/L	235

Two Step Chemical Addition Reduce Dose

		<u>One</u> <u>Step</u>	<u>Step 1</u>	<u>Step 2</u>	<u>Two</u> Steps
P entering	mg/L	5	5	1	5
P residual	mg/L	0.1	1	0.1	0.1
Alum/P dose	mol/mol	5	1.5	5	2.1
Alum/P dose	mg/mg	48	14	48	21
Alum dose	mg/L	235	58	43	101

Two Step Chemical Addition Reduce Dose

		<u>One</u> Step	Step 1	Step 2	<u>Two</u> Steps
P entering	mg/L	5	5	1	5
P residual	mg/L	0.1	1	0.1	0.1
Alum/P dose	mol/mol	5	1.5	5	2.1
Alum/P dose	mg/mg	48	14	48	21
Alum dose	mg/L	235	58	43	101

Reuse Chemical Sludge to Reduce Dose and Increase Reliability

- Return chemical sludge to upstream process
- Build solids inventory operate in solids contact mode

Conventional Tertiary Chemical P Removal

"ReUse" Chemical Sludge Upstream

Contact Clarification in Tertiary

Coeur d'Alene: Microfiltration and Solids Recycle

HR

Implications for Design and Operation – Coeur d'Alene Pilot

No Solids Inventory

TMF EFF PO4-P • SE PO4-P

Implications for Design and Operation – Coeur d'Alene Pilot

With Solids Inventory

Summary and Conclusion - I

- Chemical reactions for phosphorus removal with ferric or alum is a primarily a surface complexation reaction
- Good mixing and contact time is needed to maximize chemical efficiency
- Preformed Metal Hydroxides retain the ability to react and remove phosphate

Summary and Conclusion - II

- Target phosphorus species for effective removal:
 - Precipitate Reactive Phosphorus Phosphate
 - Increased dose can improve removal
 - Filter particulate fractions
 - High efficiency filters
 - Soluble Non-Reactive P remains difficult to remove
- Reuse metal hydroxides to reduce chemical use

Optimizing Chemical Phosphorus Removal

> JB Neethling HDR Engineering

2013 Technical Conference and Exposition Ohio Water Environment Association (OWEA) Mason, OH June 18-20, 2013

Copyright 2013 HDR Engineering, Inc. All rights reserved.