Screw Press Dewatering Optimization

By

Kelly Brown, BDP Industries, Inc.
Where should your focus be???
What is the objective of your optimization?

- Maximize Capacity: Solids Loading, Flow Rate
- Maximize Cake Solids
- Minimize Polymer Usage
- Stable performance: consistent cake solids
- Reduce Operating Labor
- Lower Energy Costs
- Reduce maintenance costs
- Increase Screw Press availability
- Improve material handling properties

Any others you can thinking of???
Solids Capture!!!

What is Solids Capture:
(Percentage of suspended solids in the feed that ends up in the discharge)

% Capture = \(\frac{C}{F} \left(\frac{F-E}{C-E} \right) \times 100\% \)

Where:
- \(C = \) Dewatered Sludge Total Solids (% TS)
- \(F = \) Feed (% TSS); excluding any dilution from polymer solution flow
- \(E = \) Filtrate (% TSS); excluding any dilution from polymer solution and belt wash water flows
Dewatering Optimization usually focuses on Cake Solids, in this effort filtrate clarity, solids capture, takes a back seat.
Tools for Optimization:

- **Chemical Treatment:**
 - Type
 - Dosage

- **Operator Observations**

- **Equipment settings:**
 - Flows
 - Screw Rpm
 - Cone Pressure
 - Feed Pressure

- **Instrumentation:**
 - Flows
 - Suspended Solids
 - Turbidity
 - Zeta potential

- **Mechanical Condition of Equipment**

Monterey CA, WWTP, Screw Press
Chemical Treatment:

- **Laboratory:**
 - Polymer Screening
 - Charge, Charge Density, Linear / Branched
 - Conditioning:
 - Mixing Intensity, Dosage,
 - Time
 - Bench Simulations

- **Full Scale Trials**
Chemical Treatment

- Form Time, Sludge Volume Ratio.
- Filtrate Clarity
- Flocc Structure
- Spreading
- Cake Release
- Amount of Solids Expressed
Bench Simulations:

- Bench Simulations:
 - Spreading
 - Cake Release
 - Expressed Solids
Observations:

- Flocc Structure
Observations:

- Filtrate Clarity
- Drainage along Screw
Filtrate and Polymer:

Excess Polymer

Perfect
Observation: Filtrate Clarity:

A good plant design should make filtrate clarity observable (preferred) or measured.
Observations:

- **Discharge Cake**
 - Scaly look at cone
 - Powdery look on pile
 - Pile Bounce
Equipment Settings:

- Control Panel Setting:
 - Flows:
 - Feed Flow, gpm
 - Polymer Flow, gph
 - Screw, rpm
 - Screw Torque, amps
 - Cone Pressure, psi
 - Feed Pressure, psi

- Ohaus:
 - Feed Suspended solids
 - Cake solids

- Spread Sheet Calculations:
 - lb/hr, lb/ton
Screw Press Optimization

Cake Solids vs. Solids Loading

Discharge Cake Solids (%) vs. Solids Loading (lbs/hr)
Screw Press Optimization

Discharge Cake Solids vs. Polymer Dosage

Polymer Dosage (active lb/dry ton)

Discharge Cake Solids (%)
Screw Press Optimization

![Graph](attached_graph.png)
Screw Press Optimization

Cake Solids vs Cone Pressure @ 90lb/hr Solids Loading

- **Cake Solids, wt%**
 - 18.00
 - 17.00
 - 16.00
 - 15.00
 - 14.00
 - 13.00
 - 12.00
 - 11.00
 - 10.00

- **Cone Pressure, psi**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100

- **Data Points**
 - Diamond: Cake Solids vs Cone Pressure
 - Line: Linear (Cake Solids vs Cone Pressure)
Instruments:

- Pump rpm
- Turbidity Sensors
- Pressure / Weight Sensors: Sludge Levels in Chutes / Pumps etc.
- Belt Scales
- Others, not recommend: Viscosity, Streaming current, zeta potential
Mechanical:

- Flight brushes: required to keep cake heel from developing.
Shower Assembly:

- Important: the shower assembly has:
 - adequate pressure
 - nozzles are clean.
 - Frequency is optimum.
 - Batch or Continuous.
Why is Solids Capture Critical?

- Industry standard 95%, many below 80% and some as low as 60%.
- Dirty filtrate means accelerated wear on dewatering unit.
- Increase labor in keeping facility clean.
- Recycled solids wear on pumps and other equipment.
- Increases dewatering chemical costs and lowers cake solids.
- More important with Smaller size WWTP.
On a Broader Scale Poor Solids Capture Causes:

- Higher energy costs for plant
- Lowers plant performance
- **Creates additional particles that are difficult to dewater.**
 - Bacteria type, filamentous
 - Colloidal Particles
 - Particles with poor surface chemistry for flocculation
- **Best to get these out in the first pass**
Sulfur Springs WWTP Texas

- 17% cake solids was maximum possible
- New Dewatering System with improved capture
- 3 months later, 23% cake solids.
Optimization is multi-dimensional and intricately related:

Increasing: Chemical Dosage / Cone Pressure / Solids Loading

Cake Solids, wt%
Optimization is multi dimensional and the intricately related:

Increasing: Chemical Dosage / Cone Pressure / Solids Loading

Solids Capture, wt%
Stable “Feed Solids Concentration” is of Critical Importance and Often poorly designed.

- **Mixed surge tank.**
 - 60 minutes
 - Dampens out changes
 - Operators have time to react.

- **Chemical dosage**
- **Solids Loading**
- **Cone Pressure**
- **Etc.**
Consistency in monitoring all the factors key

- Develop Relationships that consider all the factors.
- Effort will yield improved overall plant performance.
- It is worth the effort.
Questions?