Respect the Rheology!

Thickened Biosolids Pumping for Beneficial Reuse in Columbus, Ohio
December 7, 2017

Rick Kent
Southerly WWTP Plant Manager, City of Columbus

Donnie Stallman
Senior Engineer, Brown and Caldwell
Agenda

- Overview of Columbus Biosolids Land Application Program/Project
- Sludge Pumping Design Practices
- Rheology 101
- Southerly WWTP Biosolids Land App Project
 - Field Testing
 - Rheology Testing
- Results and Startup
Overview of Columbus Biosolids Land Application Program
Columbus Sustainability Goals

• City sustainability goals described in the “Green Memo”

• Focus on conservation, efficiency, and renewables/reuse

• “Eliminate use of incinerators at Southerly WWTP...”
Southerly WWTP Solids Disposal

Southerly Biosolids Distribution 2014, Dry Tons

OM 2,453.58 18%
Incineration 2,574.80 19%
Liquid LA 0.00 0%
quasar 2,708.30 19%
Compost 6,171.60 44%

Southerly Biosolids 2015, Dry Tons

Incineration 592.88 4%
Deep Row Hybrid Poplar 3,620.95 26%
quasar 3,229.74 23%
Landfill 454.42 3%
Compost 6,070.03 44%

Southerly Biosolids 2017, Dry Tons

Grow Ohio 216.76 2%
Deep Row Hybrid Poplar 1,938.62 15%
Liquid LA 2,191.73 17%
quasar 4,001.49 32%
Compost 4,236.89 34%
SWWTP: 2017 (data through November)

- Liquid Land Application
 - 9,070,000 gallons
 - 37,400 wet tons
 - In Storage – 96,000 gallons
Biosolids Land Application

• Overview of BLAF project
 • 8 Mgal of storage for thickened biosolids
 • Truck loading station
 • Pump/control building for truck load out
 • Repurposed centrifuges/new thickened biosolids pumps

• Thickened biosolids:
 • Centrifuge thickened with polymer addition to 8-10% TS.
Two Thickened Biosolids (TBS) Pumping Systems Designed

TBS Transfer Pump
- From centrifuges to storage tanks

Truck Loading/Recirculation
- From tanks to truck loading, tank recirculation
The 8-million gallon question:

- How are we going to move this stuff (10%TS Biosolids)?
 - Not dry/typical cake %TS
 - Very thick (for a “liquid”), non-Newtonian characteristics.
The 8-million gallon question:
First... a little Rheology 101

- Newtonian Fluid: viscosity constant, independent of shear rate (water).
- Non-Newtonian: viscosity not constant with change in shear rate (Literature says wastewater sludge once solids concentration >~2%).
- Shear-thinning: viscosity decreases as shear-rate increases.
- Yield Stress: minimum amount of force (shear) applied to initiate flow.
- Thixotropy: viscosity decreases over time when constant shear is applied.
Fluid Types/Behaviors

- **“Pseudoplastic”**
 \[\tau = K\gamma^n \quad \text{Power Law} \]
 \[\tau = A\gamma + B\gamma^n \]

- **“Viscoplastic”**
 \[\tau = \tau_y + K\gamma \]
 (Bingham Plastic)

- **“Viscous”**
 \[\tau = K\gamma \]
 (Newtonian)
What do we know about biosolids?

• Review of literature suggests digested sludge acts like a viscoplastic.
 • Shear-thinning
 • Yield stress
What does that look like on system curve?

- **Yield Stress**, which must be overcome before the sludge will flow.

- High viscosity / friction at low flow causes steep slope in H-Q curve.

- Shear thinning, decreasing viscosity actually causes curve to dip as flow/velocity increase.

- Once fully turbulent (viscosity becomes constant), H-Q curve shape resembles water curve.
Let’s hit the books...

- Pumping Station Design (Sanks)
 - Underlying theory/equations
 - Pump types
 - Design procedures

- “Mulbargar Curves”

- Acknowledges uncertainty in sludge friction loss calculations and recommends adjusting factors upward by “50% or more” for atypical sludges.
What did we come up with?

- Textbook – “Mulbargar” approach (based on 10% TS):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TBS Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (gpm)</td>
<td>135</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>75</td>
</tr>
<tr>
<td>Motor size, calculated (hp)</td>
<td>20</td>
</tr>
<tr>
<td>Motor size, selected (hp)</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Truck Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (gpm)</td>
<td>500 - 1,000</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>35 - 45</td>
</tr>
<tr>
<td>Motor size, calculated (hp)</td>
<td>60</td>
</tr>
<tr>
<td>Motor size, selected (hp)</td>
<td>125</td>
</tr>
</tbody>
</table>
So... we’re done, right?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TBS Transfer</th>
<th>Truck Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (gpm)</td>
<td>135</td>
<td>500 - 1000</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>75</td>
<td>35 - 45</td>
</tr>
<tr>
<td>Motor size, calculated (hp)</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Motor size, selected (hp)</td>
<td>40</td>
<td>125</td>
</tr>
</tbody>
</table>

RESPECT THE RHEOLOGY!

Motor size, selected (hp) 125
Too much uncertainty in sludge characteristics

- Two-pronged approach to improve our confidence in sludge pumping design:
 - Field testing
 - Rheology testing
Field Testing

• Centrifuge testing/optimization needed to produce 8-10% TS

• Existing thickened sludge pumps (rotary lobes) pumped to Digester 6 (digested sludge storage).

• Flow, pump speed, and manual pressure readings along the flow path. %TS grabs from centrifuges taken.
Field Testing - Findings

- Dialing in/maintaining at 9% or 10% is challenging.
- Existing TSPs were not going to be sufficient to pump all the way to the new storage tanks.
- Data was noisy.
 - Pump speed, flow, and pressure loss weren’t following clear relationship.
- Estimated pressure loss roughly based on psi/ft.
 - ~0.05 psi/ft at 55-75 gpm.
Rheology Analysis

- Field collected samples (at 9.6 %TS) sent to private lab
- Tested at two temperatures (40F and 75F)
- Tested over shear range of 0.01 to 100 s\(^{-1}\)
- STRESSTECH Rheometer (cup and bob)
Rheometers

Spindle type
Concentric cylinder
Double cone-plate
Cone-plate
Plate-plate
Cone-cone
Shear Thinning Behavior
Two 40°F Runs with Power Law and Bingham Fits

Shear Stress (Pa)

Shear Rate (s⁻¹)

\[\tau = K\gamma^n \] (Power Law)

\[\tau = \tau_y + K\gamma^n \] (Herschel-Bulkley)

\[\tau = \tau_y + K\gamma \] (Bingham Plastic)

\[\tau = K\gamma \] (Newtonian)
Rheology Results: Constants

• Bingham:
 • Yield Stress, $\tau_y \sim 70$ to 90 Pa
 • Consistency Factor, $K \sim 0.15$ to 0.24 Pa-s

• Power Law:
 • Consistency Factor, $K \sim 35$ to 65 (Pa-s)n
 • Flow Index, $n \sim 0.13$ to 0.20
Avert your eyes... it’s math

- **Power Law – Laminar Case:**

\[
\begin{align*}
 & h_f = 4f \frac{L \overline{V}^2}{D} \\
 & f = \left(\frac{3n+1}{n} \right)^{n} \frac{2^{n+1}K}{\overline{V}^{2-n}D^n \rho} \\
 & \Delta p = -\frac{2^{n+2} \left(\frac{3n+1}{n} \right)^n LK\overline{V}^n}{D^{n+1}} \\
 & Re_{PL} = 2^{3-n} \left(\frac{n}{3n+1} \right)^n \frac{\overline{V}^{2-n}D^n \rho}{K} \\
 & Re_{PL,critical} = 2100 \frac{(4n+2)(5n+3)}{3(3n+1)^2}
\end{align*}
\]
Hopefully you know someone with a spreadsheet...

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSP to BLAF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Segment #</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Segment Description</td>
<td>12" Suction</td>
<td>8" suction</td>
<td>8" Discharge</td>
<td>8" to 3" meter</td>
<td>3" meter</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flow (gpm)</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Diameter (inch)</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Length (ft)</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fitting K</td>
<td>2.5</td>
<td>0.2</td>
<td>0.49</td>
<td>7.4</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Specific Gravity</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consistency Factor, K (Pa.s^n)</td>
<td>63.283</td>
<td>63.283</td>
<td>63.283</td>
<td>63.283</td>
<td>63.283</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flow Index, n</td>
<td>0.133</td>
<td>0.133</td>
<td>0.133</td>
<td>0.133</td>
<td>0.133</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turbulent Flow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Critical Reynolds Number</td>
<td>1828</td>
<td>1828</td>
<td>1828</td>
<td>1828</td>
<td>1828</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reynolds Number</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>339</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Est by WRC (UK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Velocity (m/s)</td>
<td>0.156</td>
<td>0.350</td>
<td>0.350</td>
<td>0.350</td>
<td>2.490</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fittings Factor</td>
<td>87.06</td>
<td>202.9</td>
<td>202.9</td>
<td>202.9</td>
<td>202.9</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>D (m)</td>
<td>0.30</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.08</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q (m³/sec)</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
<td>0.011</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L (m)</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Density (kg/m³)</td>
<td>1030</td>
<td>1030</td>
<td>1030</td>
<td>1030</td>
<td>1030</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wall Shear Stress (Pa)</td>
<td>86.8</td>
<td>102.0</td>
<td>102.0</td>
<td>102.0</td>
<td>150.9</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wall Shear Rate (1/s)</td>
<td>10.7</td>
<td>36.3</td>
<td>36.3</td>
<td>36.3</td>
<td>687.5</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Frictional Pressure (Pa)</td>
<td>1736</td>
<td>0</td>
<td>1224</td>
<td>47745</td>
<td>16899</td>
</tr>
</tbody>
</table>

Brown and Caldwell
Updated Hydraulic Calculations - TBPs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mulbargar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (gpm)</td>
<td>135</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>75</td>
</tr>
<tr>
<td>Motor size, calculated (hp)</td>
<td>20</td>
</tr>
<tr>
<td>Motor size, selected (hp)</td>
<td>40</td>
</tr>
</tbody>
</table>

• Had to make sure piping class was OK
Updated Hydraulic Calculations – Truck Loading Pumps

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mulbargar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow (gpm)</td>
<td>500 - 1,000</td>
</tr>
<tr>
<td>Pressure (psi)</td>
<td>35 - 45</td>
</tr>
<tr>
<td>Motor size, calculated (hp)</td>
<td>60</td>
</tr>
<tr>
<td>Motor size, selected (hp)</td>
<td>125</td>
</tr>
</tbody>
</table>
Startup in Oct 2016

• Loaded 50 trucks during operational demonstration
• Pressure readings on the TBPs pumping to BLAF tanks up to 200psi
• Pumping from centrifuges to BLAF regularly since startup
• Over 9 million gallons pumped in 2017 through Nov.
Project Takeaways/Lessons Learned

• No mixing in storage tanks – only circulation
 • At least 4 turn-overs before sampling begins to get representative sample

• %TS decreases over time when stored – continued digestion?

• Great feedback from the haulers on the loadout station!
Summary of Best Practices for Design

• Sanks lays it out pretty well:
 1. Treat each sludge pumping application as a unique design problem
 2. Develop site specific design criteria based on detailed evaluation of the specific sludge characteristics.
• Establish range of operating conditions from clean water to worst case sludge scenario – especially for centrifugal pumps.
• Common sludges like raw, or digested, less than 5-6% TS – “textbook” or simplified approaches likely OK.
• If data exists for a “similar” sludge use it with caution.
• Hydraulic modeling softwares come with sludge correction/rheology models – apply with engineering judgement (do some homework on limitations/applicability).
When to do Rheology Testing?

- **Pumping design**
 - Especially for really thick or unusual sludge characteristics where data isn’t available.

- **Mixing designs**
 - Confirm how much energy is needed and if the sludge will mix
Thanks to everyone involved!

- **Black and Veatch**
 - Bob O’Bryan
 - Sierra McCreary
 - Tyler York

- **City of Columbus**
 - Troy Branson
 - Rick Kent
 - Everyone at SWWTP

- **Brown and Caldwell**
 - Dave Nitz
 - Dante Fiorino
 - Ravi Ravisangar (the man with the spreadsheet!)
Questions
Bullpen
More Rheology

- Shear Strain = $\delta u/h$
- Shear Stress = $F/A = \tau = N/m^2$
- Shear Rate (Shear Strain Rate) = δ.Shear Strain/ δ.time = s$^{-1}$
- Viscosity (dynamic or absolute) = Shear Stress/Shear Rate = Ns/m^2 (Pa-s or Poise)
- Kinematic (divide by density) = m^2/s (Stokes)
Pump Types

- Centrifugal- Non-Clog
- Centrifugal- Recessed Impeller
- Screw-Centrifugal
- Progressive Cavity
- Rotary Lobe
- Piston Pumps
- Diaphragm