Respect the Rheology!

Thickened Biosolids Pumping for Beneficial Reuse in Columbus, Ohio December 7, 2017

Rick Kent Donnie Stallman Southerly WWTP Plant Manager, City of Columbus Senior Engineer, Brown and Caldwell

Agenda

- Overview of Columbus Biosolids Land Application Program/Project
- Sludge Pumping Design Practices
- Rheology 101
- Southerly WWTP Biosolids Land App Project
 - Field Testing
 - Rheology Testing
- Results and Startup

Overview of Columbus Biosolids Land Application Program

Columbus Sustainability Goals

- City sustainability goals described in the "Green Memo"
- Focus on conservation, efficiency, and renewables/reuse
- "Eliminate use of incinerators at Southerly WWTP..."

Southerly WWTP Solids Disposal

SWWTP: 2017 (data through November)

Liquid Land Application

- 9,070,000 gallons
- 37,400 wet tons
- In Storage 96,000 gallons

Biosolids Land Application

- Overview of BLAF project
 - 8 Mgal of storage for thickened biosolids
 - Truck loading station
 - Pump/control building for truck load out
 - Repurposed centrifuges/new thickened biosolids pumps
- Thickened biosolids:
 - Centrifuge thickened with polymer addition to 8-10% TS.

Truck Loading Station

BLAF Facilities

Two Thickened Biosolids (TBS) Pumping Systems Designed

TBS Transfer Pump

 From centrifuges to storage tanks

Truck Loading/ Recirculation

 From tanks to truck loading, tank recirculation

The 8-million gallon question:

- How are we going to move this stuff (10%TS Biosolids)?
 - Not dry/typical cake %TS
 - Very thick (for a "liquid"), non-Newtonian characteristics.

The 8-million gallon question:

First... a little Rheology 101

- Newtonian Fluid: viscosity constant, independent of shear rate (water).
- Non-Newtonian: viscosity not constant with change in shear rate (Literature says wastewater sludge once solids concentration >~2%).
- Shear-thinning: viscosity decreases as shear-rate increases.
- Yield Stress: minimum amount of force (shear) applied to initiate flow.
- Thixotropy: viscosity decreases over time when constant shear is applied.

What do we know about biosolids?

- Review of literature suggests digested sludge acts like a viscoplastic.
 - Shear-thinning
 - Yield stress

What does that look like on system curve?

Brown and Caldwell

9-1. Hydrauli

Let's hit the books...

- Pumping Station Design (Sanks)
 - Underlying theory/equations
 - Pump types
 - Design procedures
- "Mulbargar Curves"

 Acknowledges uncertainty in sludge friction loss calculations and recommends adjusting factors upward by "50% or more" for atypical sludges.

What did we come up with?

Textbook – "Mulbargar" approach (based on 10% TS):

Parameter	TBS Transfer
Flow (gpm)	135
Pressure (psi)	75
Motor size, calculated (hp)	20
Motor size, selected (hp)	40
Parameter	Truck Loading
Parameter Flow (gpm)	Truck Loading 500 - 1,000
Flow (gpm)	500 - 1,000

So... we're done, right?

RESPECT THE RHEOLOGY!

Motor size, selected (hp)

125

Too much uncertainty in sludge characteristics

- Two-pronged approach to improve our confidence in sludge pumping design:
 - Field testing
 - Rheology testing

Field Testing

- Centrifuge testing/optimization needed to produce 8-10% TS
- Existing thickened sludge pumps (rotary lobes) pumped to Digester 6 (digested sludge storage).
- Flow, pump speed, and manual pressure readings along the flow path. %TS grabs from centrifuges taken.

Field Testing - Findings

- Dialing in/maintaining at 9% or 10% is challenging.
- Existing TSPs were not going to be sufficient to pump all the way to the new storage tanks
- Data was noisy.
 - Pump speed, flow, and pressure loss weren't following clear relationship
- Estimated pressure loss roughly based on psi/ft.
 - ~0.05 psi/ft at 55-75 gpm

Rheology Analysis

- Field collected samples (at 9.6 %TS) sent to private lab
- Tested at two temperatures (40F and 75F)
- Tested over shear range of 0.01 to 100 s⁻¹
- STRESSTECH Rheometer (cup and bob)

Rheometers

Spindle type

Concentric cylinder

Double cone-plate

Cone-plate

Shear Thinning Behavior

Thickened sludge 40F sh rate sweep r1.RSS

-Iscosity

Thickened sludge 40F (Dup) sh rate sweep 1

-D- Viscosity

Thickened sludge 40F (Dup) sh rate sweep 2

Viscosity

Two 40°F Runs with Power Law and Bingham Fits

Rheology Results: Constants

- Bingham:
 - Yield Stress, $T_v \sim 70$ to 90 Pa
 - Consistency Factor, K ~ 0.15 to 0.24 Pa-s
- Power Law:
 - Consistency Factor, K ~35 to 65 (Pa-s)^n
 - Flow Index, n ~ 0.13 to 0.20

Avert your eyes... it's math

Power Law – Laminar Case:

Hopefully you know someone with a spreadsheet...

		TSP Headloss Pipe Diameter Changes.xlsm - Excel									
F	ile Home In	nsert Page Layout Formulas Da	ta Review	View BLU	JEBEAM	Tell me what yo	u want to do				
1	Cut	Calibri • 10 • A A	= = >	• 📲 Wrap	Text	General	-	j ≠			∑ Au ↓ Fill
Pas	ste 💉 Format Paint	er B <i>I</i> <u>U</u> • A • A •	= = =	▶ Merg	e & Center 👻	\$-% *	€.0 .00 00 →.0 Condit Format	ional Formatas ting - Table -		t Delete Format	
	Clipboard	Fat Font Fat		Alignment	E _k	Number	E _k	Styles		Cells	
03	} •	$\times \checkmark f_x$									
	А	В	С	D	E	F	G	Н	I	J	К
1			TSP to BLAF								
2											
3		Segment #		2	3	4	5	6	7	8	
4		Segment Description		8" suction		8" to 3" meter		8" to 6"	6" to DCB3	8" to tank	
5		Flow (gpm) =	180	180	180	180	180	180	180	180	
6		Diameter (inch) =	12	8	8	8	3	8	6	8	
7		Length (ft) =	5	0	2	78	7	103	408	437	
8		Fitting K =	2.5	0.2	0.45	7.4		2	3.2	5.8	
9		Specific Gravity =	1.03	1.03	1.03	1.03	1.03	1.03	1.03	1.03	
10			63.283	63.283	62.000	62.202	63.283	63.283	62.000	C2 202	
11 12		Consistency Factor, K (Pa.s^n) =		0.133	63.283 0.133	63.283			63.283	63.283	
12		Flow Index, n =	0.133	0.155	0.155	0.133	0.133	0.133	0.133	0.133	
14	Turbulent Flow	Critical Reynolds Number =	1828	1828	1828	1828	1828	1828	1828	1828	
15	Turbulent How	Reynolds Number =	2	1020	1020	1020	339	1020	28	10	
16	Est by WRC (UK)	-	_			Laminar Flow					
17		Velocity (m/s) =	0.156	0.350	0.350	0.350	2.490	0.350	0.623	0.350	
18		Fittings Factor =	870.6	202.9	202.9	202.9	6.9	202.9	72.7	202.9	
19		5									
20		D (m) =	0.30	0.20	0.20	0.20	0.08	0.20	0.15	0.20	
21		Q (m^3/sec) =	0.011	0.011	0.011	0.011	0.011	0.011	0.011	0.011	
22		L (m) =	2	0	1	24	2	31	124	133	
23		Density (kg/m^3) =	1030	1030	1030	1030	1030	1030	1030	1030	
24											
25		Wall Shear Stress (Pa) =	86.8	102.0	102.0	102.0	150.9	102.0	114.4	102.0	
26		Wall Shear Rate (1/s) =	10.7	36.3	36.3	36.3	687.5	36.3	85.9	36.3	
27											
28		Frictional Pressure (Pa) =	1736	0	1224	47745	16899	63048	373494	267495	

Updated Hydraulic Calculations - TBPs

Parameter	Mulbargar
Flow (gpm)	135
Pressure (psi)	75
Motor size, calculated (hp)	20
Motor size, selected (hp)	40

Had to make sure piping class was OK

Updated Hydraulic Calculations – Truck Loading Pumps

Parameter	Mulbargar
Flow (gpm)	500 - 1,000
Pressure (psi)	35 - 45
Motor size, calculated (hp)	60
Motor size, selected (hp)	125

Startup in Oct 2016

- Loaded 50 trucks during operational demonstration
- Pressure readings on the TBPs pumping to BLAF tanks up to 200psi
- Pumping from centrifuges to BLAF regularly since startup
- Over 9 million gallons pumped in 2017 through Nov.

Project Takeaways/Lessons Learned

- No mixing in storage tanks only circulation
 - At least 4 turn-overs before sampling begins to get representative sample
- %TS decreases over time when stored continued digestion?
- Great feedback from the haulers on the loadout station!

Summary of Best Practices for Design

- Sanks lays it out pretty well:
 - 1. Treat each sludge pumping application as a unique design problem
 - 2. Develop site specific design criteria based on detailed evaluation of the specific sludge characteristics.
- Establish range of operating conditions from clean water to worst case sludge scenario – especially for centrifugal pumps.
- Common sludges like raw, or digested, less than 5-6% TS "textbook" or simplified approaches likely OK.
- If data exists for a "similar" sludge use it with caution.
- Hydraulic modeling softwares come with sludge correction/rheology models – apply with engineering judgement (do some homework on limitations/applicability).

When to do Rheology Testing?

- Pumping design
 - Especially for really thick or unusual sludge characteristics where data isn't available.
- Mixing designs
 - Confirm how much energy is needed and if the sludge will mix

Thanks to everyone involved!

- Black and Veatch
 - Bob O'Bryan
 - Sierra McCreary
 - Tyler York

- <u>City of Columbus</u>
 - Troy Branson
 - Rick Kent
 - Everyone at SWWTP

- Brown and Caldwell
 - Dave Nitz
 - Dante Fiorino
 - Ravi Ravisangar (the man with the spreadsheet!)

Questions

Bullpen

More Rheology

- Shear Strain = $\delta u/h$
- Shear Stress = $F/A = T = N/m^2$
- Shear Rate (Shear Strain Rate) = δ .Shear Strain/ δ .time = s⁻¹
- Viscosity (dynamic or absolute) = Shear Stress/Shear Rate = Ns/m² (Pa-s or Poise)
- Kinematic (divide by density) = m^2/s (Stokes)

Pump Types

- Centrifugal- Non-Clog
- Centrifugal- Recessed Impeller
- Screw-Centrifugal
- Progressive Cavity
- Rotary Lobe
- Piston Pumps
- Diaphragm