Performance Improvements and Energy Efficiency Efforts at Jackson Pike WWTP

2011 – OWEA Plant Operations and Laboratory Analysis Workshop

Gary Hickman, Plant Manager JPWWTP

Jackson Pike Goals

To have as much excess treatment capacity as possible at all times under any circumstance.

 Remove wastewater treatment residuals from the wastewater as quickly and efficiently as possible and to direct them to the lowest cost beneficial reuse options available while maintaining as much excess treatment capacity as possible.

Columbus Area Collection System Overview

YANE, MECHINARI, HAMBLETON & TETON, 5 70 MEL STREET, GAHANNA, OHD 40220-30 701 414 471 AUX 101 TAX

Draft Volume 1 Figure 2

Plant Capacity Improvements

Jackson Pike Wastewater Treatment Plant

Improvements At JPWWTP

- New Influent Pumps with AFDs
- Simplified Flow Split between A-Plant and B-Plant
- Larger Conduits into and out of Process tankage.
- Modification of Aeration Process from Plug-Flow to Step Feed
- Modification and Expansion of Effluent Pump Station/Flushing Water System

Plant Hydraulic Improvements

Modification of Aeration Process from Plug-Flow to Step Feed

- New Aeration System Piping
- Second Anoxic Selector with additional Baffle walls to mid point of aeration tanks.
- Step-Feed System added to mid-point of aeration tanks.
- Use of OTT- fine bubble diffusers instead of traditional panel or disc type diffusers

New Aeration System Piping

BAY 2

BAY 3

0.30.2008

BAY 4

Use of OTT- fine bubble diffusers instead of traditional panel or disc type diffusers

Second Anoxic Selector with additional Baffle walls to mid point of aeration tanks.

Automatic Control of Raw Sewage Pumping

Automatic Control of Raw Sewage Pumping

JPMP_POP_RSP_AUTO_CONTROL.grf											
JACKSON PIKE RAW SEWAGE PUMPING AUTOMATIC CONTROL											
SELECT SELECT LEVEL MODE FLOW MODE PUMPS RUNNING 2 FLOW MODE CONTROL STATUS ACTIVE WET WELL LEVEL 10.5 FT	PUMP 1 AUTO RUNNING AFD 266.6 RPM 88.9 % 5648 HRS	PUMP 2 AUTO STOPPED AFD 0.0 RPM 0.0 % 7732 HRS	PUMP 3 AUTO RUNNING AFD 319.8 RPM 88.8 % 9115 HRS	PUMP 4 AUTO STOPPED AFD 0.1 RPM 0.0 % 3380 HRS	PUMP 5 AUTO STOPPED AFD 0.0 RPM -0.0 % 2895 HRS						
PMP TOTAL FLOW 74.3 MGD A & B PLANT FLOW 79.9 MGD PMP TOTAL FLOW 80.0 MGD SETPOINT A/B FLOW SELECT A/B FLOW PMP FLOW SELECTED	237 STARTS FLOW 31.6 MGD PUMP POPUP	219 STARTS FLOW 0.0MGD PUMP POPUP	114 STARTS FLOW 42.7 MGD PUMP POPUP	87 STARTS FLOW 0.0MGD PUMP POPUP	166 STARTS FLOW 0.0MGD PUMP POPUP						
LEVEL FLOW SETPOINTS SETPOINTS					EXIT						

Can choose automatic Flow or Level control

- Smooth out daily flow variations
- Saves energy by avoiding starting additional raw sewage pumps

Automatic A-Plant and B-Plant Flow Split

 Most open valve strategy to prevent extra hydraulic head loss and wasting of energy

 Can be adjusted for splits other than 50/50 between A-Plant and B-Plant

Automatic Step Feed Flow Control

JACA_POP_STEP_FEED_CONTROL.grf									
JACKSON PIKE A PLANT STEP FEED CONTROL									
HMI MODE									
PRIMARY EFFLUENT AB CO 38.6 MGD A PLANT 13.4 MG 38.1 MGD B PLANT 0.1 % 76.7 MGD TOTAL 100.1 %	NNECTOR NUME GD FLOW III WEST GATE E VLV 20130 4 EAST GATE 1 VLV 20120	BER OF TANKS N SERVICE A A PLANT B PLANT 2 TOTAL	NUMBER OF TANKS VAIL FOR STEP FEE 8 A PLANT 4 B PLANT 12 TOTAL	<u>D</u> 12.9 MGD 12.4 MGD 25.2 MGD 3.3 MGD 3.1 MGD	EP FEED CALCULAT FOTAL STEP FEED F FOTAL STEP FEED F FOTAL STEP FEED F STEP FEED REQUIRI STEP FEED REQUIRI	<u>TIONS</u> REQUIRED A PLANT REQUIRED B PLANT REQUIRED ED PER A TANK ED PER B TANK			
SELECT Step feed ratio setpoint 50.0 % Adjust ACTUAL RATIO 50.9 % SETPOINT									
TANK 1 TANK 2	TANK 3	TANK 4	TANK 5	TANK 6	TANK 7	TANK 8			
IN SERVICE IN SERVICE	IN SERVICE	IN SERVICE	IN SERVICE	IN SERVICE	IN SERVICE	IN SERVICE			
BAY 1BAY 1FLOWFLOW7.1 MGD7.2 MGDVALVE STATUSVALVE STATUSMANUAL100.2 %ADJUSTADJUST	BAY 1 FLOW 7.8 MGD VALVE STATUS MANUAL 100.2 % ADJUST	BAY 1 FLOW 7.0 MGD VALVE STATUS MANUAL 100.2 % ADJUST	BAY 1 FLOW 7.7 MGD VALVE STATUS MANUAL 100.3 % ADJUST	BAY 1 FLOW 8.3 MGD VALVE STATUS MANUAL 100.2 % ADJUST	BAY 1 FLOW 6.5 MGD VALVE STATUS MANUAL 100.0 % ADJUST	BAY 1 FLOW 6.0 MGD VALVE STATUS MANUAL 100.0 % ADJUST			
BAY 5BAY 5FLOW3.3 MGDVALVE STATUS3.3 MGDVALVE STATUSVALVE STATUSAUTO31.8 %38.7 %38.7 %	BAY 5 FLOW 3.3 MGD VALVE STATUS AUTO 35.5 % ADJUST	BAY 5 FLOW 3.2 MGD VALVE STATUS AUTO 41.3 % ADJUST	BAY 5 FLOW 3.3 MGD VALVE STATUS AUTO 36.6 % ADJUST	BAY 5 FLOW 3.2 MGD VALVE STATUS AUTO 39.2 % ADJUST	BAY 5 FLOW 3.5 MGD VALVE STATUS AUTO 30.1 % ADJUST	BAY 5 FLOW 3.3 MGD VALVE STATUS AUTO 41.0 % ADJUST			
PRIM SLUDGE PLC (JPIA050) TO A PLANT STEP FEED PLC (JPIA060) COMM OK B PLANT STEP FEED PLC (JPIB060) TO OK EXIT AERATION PLC (JACA210) TO A PLANT STEP FEED PLC (JPIA060) COMM OK A PLANT STEP FEED PLC (JPIA060) COMM OK EXIT									

Automatic Step Feed Flow Control Calculations

- Flow sharing between A-Plant and B-Plant complicated calculations for set points
- Exposed so operations can spot check control system performance

Wet Stream Improvement Goal

 To have as much excess treatment capacity as possible at all times under any circumstance.

Process Optimization

 Influent Pumping – Two large diameter sewers immediately upstream of Jackson Pike Headworks.

- Flow Control
- Level Control

Flow Split Optimization

 Because of the design, the 50-50 flow split between A-Plant and B-Plant seems to be the most stable and controllable mode of operation.

Aeration Optimization

- High efficiency OTT diffusers installed
- Aeration Blowers Optimized
- Mix Liquor levels and MCRT adjusted upwards to account for "halving" of detention time in aerators
- Dissolved Oxygen levels in aeration monitored.
 - Adjustments made to individual drop legs into each bay.
 - Air flow into each tank between 2750 scfm 3700 scfm
 - Bay 2 Dissolved Oxygen is primarily utilized for monitoring effectiveness.

Secondary Clarifiers

- Return rates are typically fixed at 90% of design flow.
- Minimal or no blankets in Secondary Clarifiers. (bugs need to be working in aeration, not relaxing in the secondary clarifiers.)

Chlorination/Dechlorination/Post-Aeration, Effluent Pumping

- Chemical dosing is substantially higher this year, than years past as new E. coli limits were implemented.
 - 30 day limit 126 colonies/100 ml (geomean)
 - 7 day limit 284 colonies/100 ml (geomean)
- Post Aeration Blowers were reduced from two on-line to one on-line with a trigger of Dissolved Oxygen below 7.5 mg/l used to determine if a second blower was warranted. (Discharge minimum limit of 7.0 mg/l)
- Effluent Pumping system was designed to be shutdown completely (including AFDs) when not in use.

Results

- Improved Peak Treatment Capacity
- Continued Compliance with NPDES Permit Limitations
- Significant Reduction in Power usage in Aeration

Improved Peak Treatment Capacity

JP Effluent Daily Total (MG)

Continued Compliance with NPDES Permit Limitations

Energy Reduction in Aeration Power Usage

Aeration Blower Energy Usage Comparison 2007 to 2011 1 Hour Averages Month of May in Each Year

Wet Stream Improvements Summary

- Reduction in hydraulic limitations
- Aeration Step Feed
- OTT fine bubble diffuser performance
- Operational fine tuning

Solids Handling Improvements

Goal: Remove wastewater treatment residuals from the wastewater as quickly and efficiently as possible and to direct them to the lowest cost beneficial reuse options available while maintaining as much excess treatment capacity as possible.

Primary Operations

- Sludge is continually drawn off the bottom of the primary clarifiers, minimal - no blankets are maintained in primary clarifiers during normal operations (< 12").
- Sludge from primaries is thickened in two of four gravity thickeners during dry weather flows.
 Additional GTs are added during first flush as needed.
- Thickened Primary sludge is pumped to a dedicated holding tank at @ 6% TS.

Wasting from Aeration

- WAS is pumped directly to Westvalia Thickening Centrifuge
- Flow rate is variable between ~ 600 900 gpm. Feed solids ~ 4,500 mg/l.
- Thicken sludge is pumped to a holding tank
 @ 6% TS.

Westfalia Thickening Operations

Anaerobic Digestion

- Two separate Feed tanks to six mesophilic anaerobic digesters, through a common line. Flow rates to digesters controlled through most open valve logic.
- Incoming sludge co-mixed with digesting sludge and put through a sludge to water heat exchanger prior to entering the digester.
- Independent trombone valve provides for mixing of sludge contents in 10 discrete zones in the digester. Gas production assists in vertical mixing as well.

Sludge Solids Dewatering Operations

- Andritz DL5-L Centrifuges are used for dewatering operations.
- Operation of Centrifuges is adjusted for disposal options.
 - Incinerator Operations
 - Composting Operations
 - Kurtz Brothers/Quasar High Solids Digestion
 - Land Application/Liquid Program

Dewatering Operation

Incineration Optimization

- Understanding the function of a Multiple Hearth Furnace (MHF) Incinerator
- MHF like constant feed at or near the maximum design loading rate for optimal performance.
- Associated scrubbing equipment is also optimized to this condition
- MHF is more correctly a "thermodryer/oxidizer"

MHF Incineration Optimization (continued)

- Controls for operation
- Feed rate
 - Solids distribution on the drying hearths controlled by load and rabble pattern
- Detention time in furnace is controlled by number of rabble arms per hearth and the rabbling speed of the center shaft
- Oxygen levels and airflow admittance control
- Temperature Profiles throughout the furnace
 - Heat in the furnace is controlled by draft created by Induced Draft fan, use of inlet air dampers and number of combustion burners firing.
- Combustion Zone location and control

Jackson Pike MHF System

Ash Handling

- Typical ash handling is through a lagoon system.
- Ash is typically transported to the lagoons by an ash slurry line.
- Columbus' ash lagoons have periodically had issues with elevated metals in the decant discharge.
- New Permit conditions require the City to explore alternatives.

Direct decanting into a dumpster

Cake Disposal Program

- Current Sludge Cake Disposal Operations include:
 - Quasar High Solids Digester System.
 - Compost Operation
- Proposed High Solids Cake Land Application include:
 - Regional Storage
 - Strip Mine reclamation utilizing hybrid poplar trees

Cake Load-out Facility

Sometimes even the best plans have execution issues.

High Solids Organic Waste Reuse Recycle System

Composting Operations

Land Application Storage & Load-out

Subsurface Injection program

Significant Reduction in Plant Power Usage

Jackson Pike Energy usage 2007 vs 2010, 2011 - YTD

Chemical Usage

Annual Chemical Delivery at Jackson Pike

Chemical Costs

As of 9/27/2011

Future Efforts

Cents/kWh

Loads - Last 8 days

MTD Peak Load (June) - 3,352 kW

Carbon Emissions (lbs) - Last 30 days

Additional Improvements

Improve Communications with Line Staff - Make sure Operating Strategies are understood Evaluate how Emergency Preparedness may impact/influence Daily Operations - Are you operating in anticipation of severe wet weather even during normal dry weather days? Make Sure Operator Training is current and **SOPs reflect current practice**

Additional Improvements

- Flow Leveling and/or load balancing
 - Recycle Streams, batch operations off-peak
 - Powering down AFDs and other electrical equipment when not needed
 - Start up Electrical Equipment One unit or process at a time, spreading out start-ups over 30 minute intervals per component when possible to minimize peak demand.
- Optimize pump selection and operating levels for raw sewage pumps
- Evaluate Building Systems HVAC for Temperature Control
- Evaluate Lighting Systems for Efficiency and motion/occupancy sensors

Additional Improvements

Computer control improvements

- Automatic Dissolved Oxygen Control in Aeration
- Aeration Blower Pressure Controls
- Return Activated Sludge flow pacing
- Utilize power monitoring capabilities built into AFDs that are networked to PLCs

