Department of Public Utilities Could Enterprise Asset Management

August 26, 2010 Kevin Campanella, DPU Assistant Director and Asset Manager

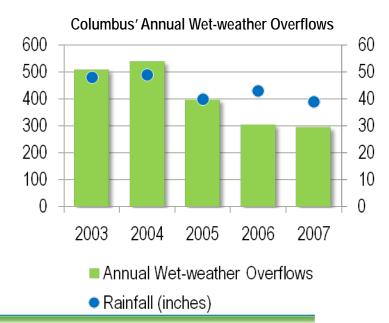
Webinar on Asset Management (Part 2 of 3)

Columbus DPU – Customers and Assets

Department of Public Utilities

DOSD

Division of Sewerage and Drainage


DOPW Division of Power and Water

Serve over 1 million customers with sewer, water

- •2 WWTPs, 480 MGD total
- 6,000 miles of sewers and storm drains
- 3 WTPs, 240 MGD total
- 3,700 miles of water mains
- Serve 13,000 electric customers
- 370 circuit miles (distribution)
- 1,330 street light miles
- 55,000 street lights

Drivers for Comprehensive AM Implementation

- DOSD: SSO Consent Order (2002) based on draft CMOM language
- AM approach used to address CMOM requirements
- AM approach brought structure and results
 - Preventive maintenance cleaning
 - Predictive maintenance CCTV
 - Large sewer condition assessment
 - Revamped FOG program
 - Performance tracking

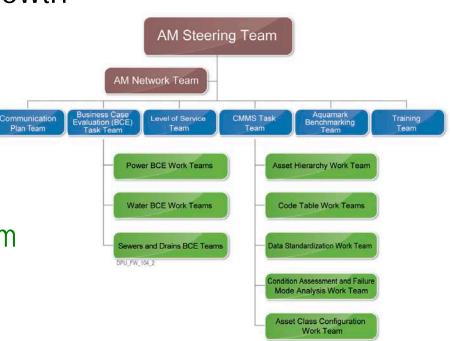
Agenda for Presentation

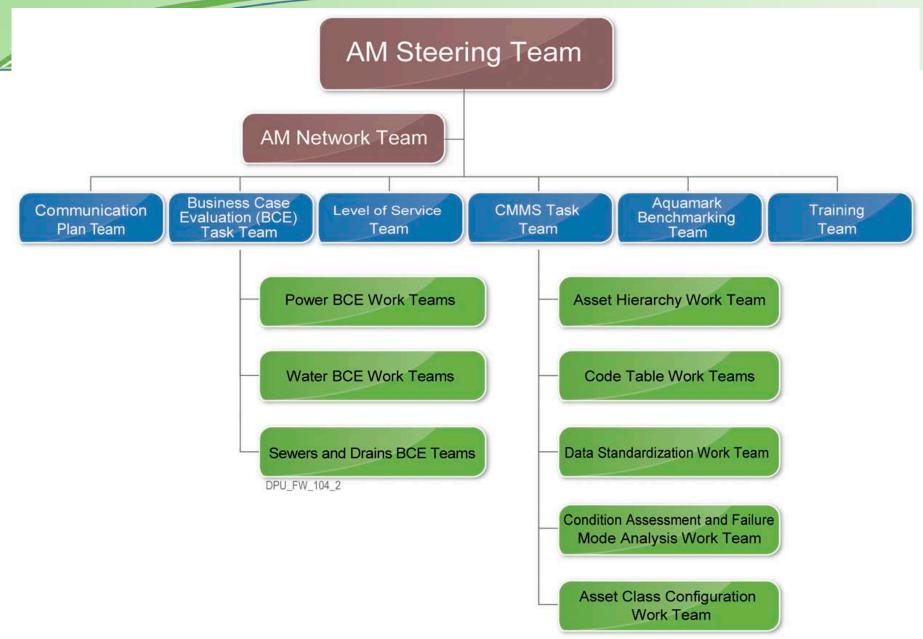
- Columbus' Asset Management Foundation
- Levels of Service, Strategic Planning and Performance Management
- Risk
- Applications of Risk:
 - Condition Assessment Planning
 - Replacement Planning
 - Business Case Evaluations
- Benefits / Results
- Q&A

Columbus DPU's AM Program Foundation

DPU's EAM Journey

Culture > > >


Education, Communication, and Teamwork


cd

Phase 1 Work

- Focus on Early Gains to Build General Understanding
 and Confidence
- Team-based Learning & Growth
 - Steering Team
 - BCE Teams
 - LOS Team
 - WAM Enhancement Teams
 - Implementation/Network Team
 - Communication Plan Team
 - Benchmarking Teams

"Blue Ribbon Panel"

AquaMark Benchmarking "Functions"

Cd

Benchmarking Team

Participants

Function 1 Corporate Policy and Business Planning	Gary Kohli, Susan Wilson, Steve Salay, Jeff Holmes, Dax Blake, Rick Westerfield, Kevin Campanella, Dominic "Dan" Hanket, Joyce Bushman, Herb Johanson, Craig Charleston	
Function 2 Asset Capability Planning	Jeff Hubbard, Mark Wade, Jeff Robertson, John Satala, Robert Schneider, James Gross, Steve Salay, Lynn Kelly, Joe Clouse, Dax Blake, David Kanning, Dwayne Maynard, Duffy McSweeney, Kevin Campanella	
Function 3 Asset Acquisition	Robert Schneider, Chris Vogel, Steve Salay, Jeff Hubbard, Mike McCloud, Robert Herr, Herb Johanson, James Gross, Keith Gilbert, John Newsome, Danella Pettenski, Ron Christian, Lynn Kelly, Miriam Siegfried, Brian Haemmerle, Kevin Campanella, Duffy McSweeney	

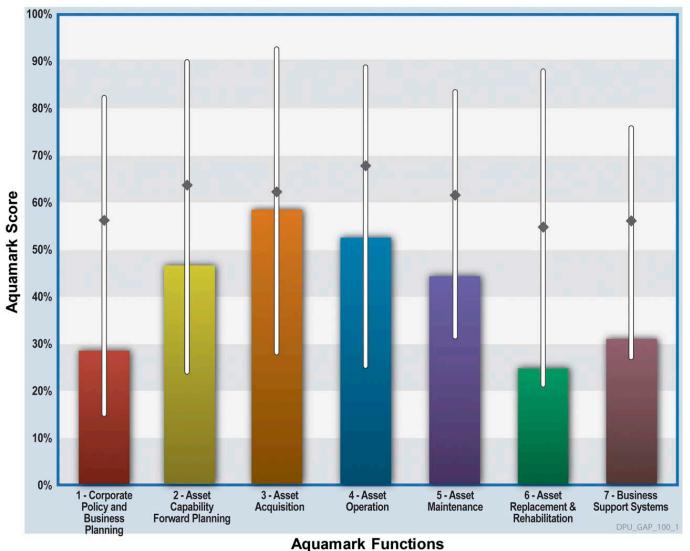
cd

Benchmarking Team, cont'd

	Will Roy, Carnell Felton, Steve Salay, Mike Heniken, William Tippery, Bob Ellinger, Mike Hupp, Mike Foster, Kevin Campanella, Duffy McSweeney	
Function 4 Asset Operation	Terry Nichols, Mike Colley, William Ratliff, Steve Hainen, Randy Warner, Cindi Fitzpatrick, Bill Adkins, Jim Tindle, Mike Spriggs, Kathy Taylor	
	Mihai Orbocea, Mark Wade, Jeff Robertson, Jeff Holmes, Jeff Hubbard, Rick Clay, Chris Vogel	
	Mike Foster, John Rubadue, Mike Smith, Bob Ellinger, Darryl Gibson, Jeff Vesco, Matt Lovsey, Martin Wollenslegel, Tom Thomas, Jeff Bartoe, Rick Wilkinson, William Tippery, Greg Martinez, Duffy McSweeney	
Function 5 Asset Maintenance	Jeff Lloyd, Dan Davis, Russ Allen, Larry Krall, Dwayne Maynard, Gene White, Chris Kehlmier, Mike Spriggs, Duffy McSweeney, Kevin Campanella	
	Rick Clay, Mark Wade, Denny Ferkan, Joe Rice, Jeff Robertson, John Satala, Joyce Bushman, Kevin Campanella	
	William Tippery, Rick Wilkinson, Tom Thomas, Steve Salay, Rick Reinhold, Herb Johanson, Nick Domenick, James Gross, Mike Foster, Bob Ellinger, George Zonders, Duffy McSweeney, Kevin Campanella	
Function 6 Asset Replacement / Rehabilitation	Gene White, Joe Clouse, Miriam Siegfried, Roger Huff, Craig Charleston, Larry Krall, Brian Haemmerce, Bill Adkins, Dwayne Maynard, Bob Arnold, Lynn Kelly, Russ Allen, Danella Pettenski, George Meyers, Duffy McSweeney	
	Rick Clay, Robert Schneider, Denny Ferkan, Mark Wade, Dan Hill, Jeff Robertson, John Satala	

Benchmarking Team, cont'd

Function 7 Business support systems Financial – Melinda Cunningham, John Funk, Joe Lombardi, Steve Snedaker, Bernie Burnheimer, Deborah Murphy, Sue Young, Paul Myres, Keena Smith, Kevin Campanella, Duffy McSweeney


Miscellaneous – George Meyers, Paul Roseberry, John Satala, Paul Washburn, Rob VanEvra, Tim Evan, Greg Barden, John Gilmore, Marin Wollenslegel, Jeff Hall, Ed Sizemore, Matt Lovsey, Steve Salay, Joe Clouse, Duffy McSweeney, Kevin Campanella

CMMS & GIS – Craig Charleston, John Rubadue, Dennis Dickerson, Rick Schomaker, Mark Wade, Bernie Burnheimer, Mike Merchant, Larry Moore, Greg Horch, Jeff Richards, Steve Salay, Tom Thomas, Don Cruden, Denny Ferkan, Steve Gooding, George Meyers, Kinney Gibson, Paul Roseberry, Jeff Holmes, Steve Snedaker, Tim Huffman, Kevin Campanella

cd

Performance Comparisons

DPU to North America

16 Improvement Initiatives

- 1. Risk Framework
- 2. Levels of Service
- 3. Performance Management
- 4. Strategic Plan
- 5. Project Delivery
- 6. Asset Management Plans
- 7. Procedures/Standards
- 8. Procurement Process

- 9. Operations Optimization
- 10. Strategic Maintenance
- 11. Org. Development
- 12. Technology Systems
- 13. Business Plans
- 14. Quality Management
- 15. Knowledge Management
- 16. Efficiency Improvements

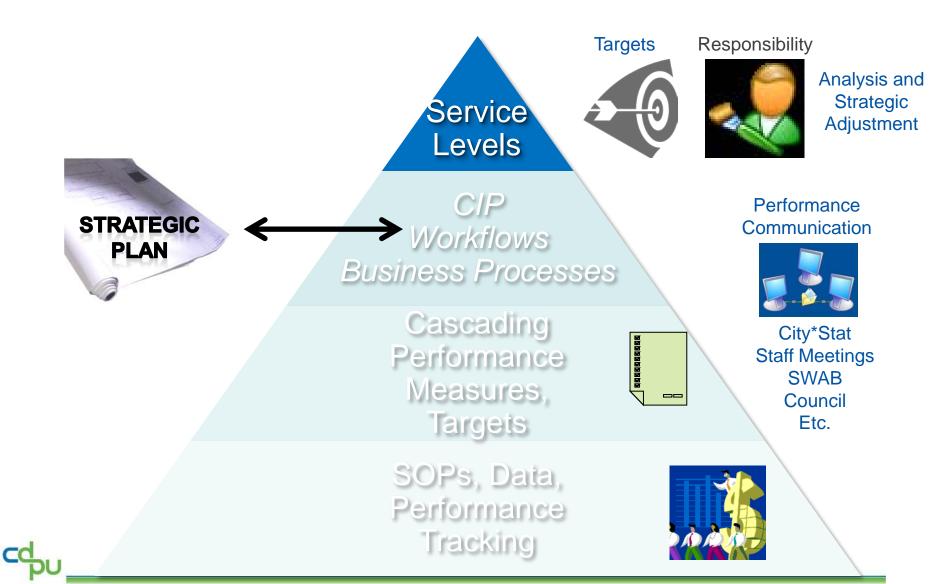
AM Definition

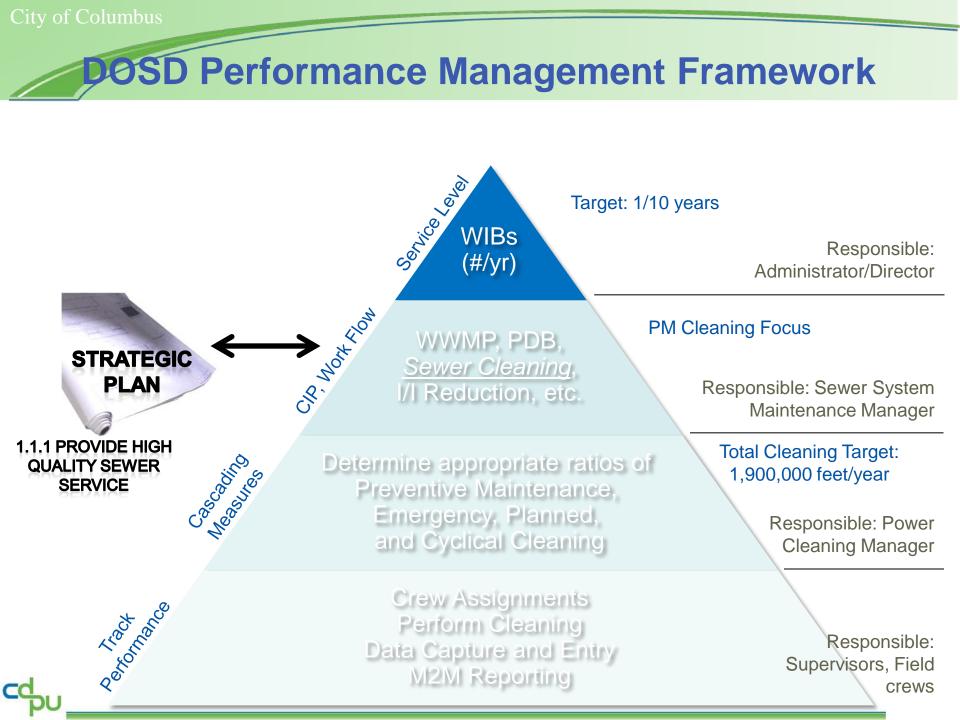
Asset Management is a business model comprised of an integrated set of processes that minimize the life-cycle cost of owning, operating, and maintaining assets, at an asseptable level of risk, while continuously delivering established levels of service.

Levels of Service (LOS), Strategic Planning, and Performance Management

Definitions

- <u>Service Level</u>: A measure of the effectiveness of a particular activity or service area **perceived by customers**.
- <u>Performance Measure</u>: A measure of a service or activity used to compare actual performance against a standard or other target. Key performance indicators are measures of how well a utility is conducting its duties (inward focus)

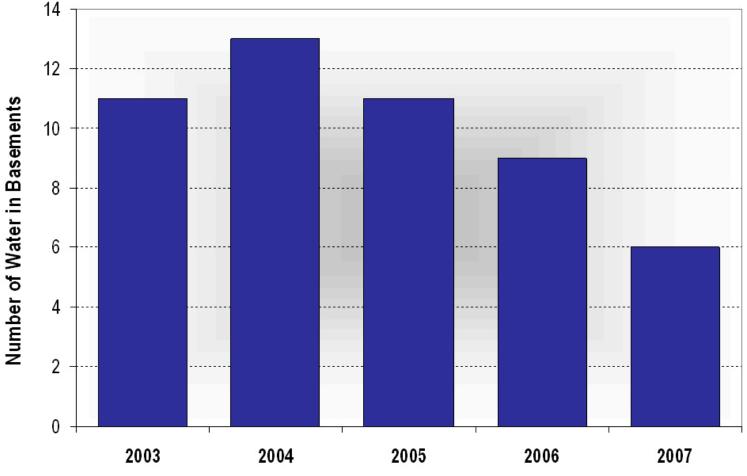

Sample Service Levels (Wastewater)


- Treatment facilities meets all permit requirements
- Number of customers reporting odors from the wastewater system per year
- Number of overflows on customer's property, reaching receiving waters, etc. per year
- Number of back-ups of sewerage within customers' premises ("flooding") per year

Sample Performance Measures (Wastewater)

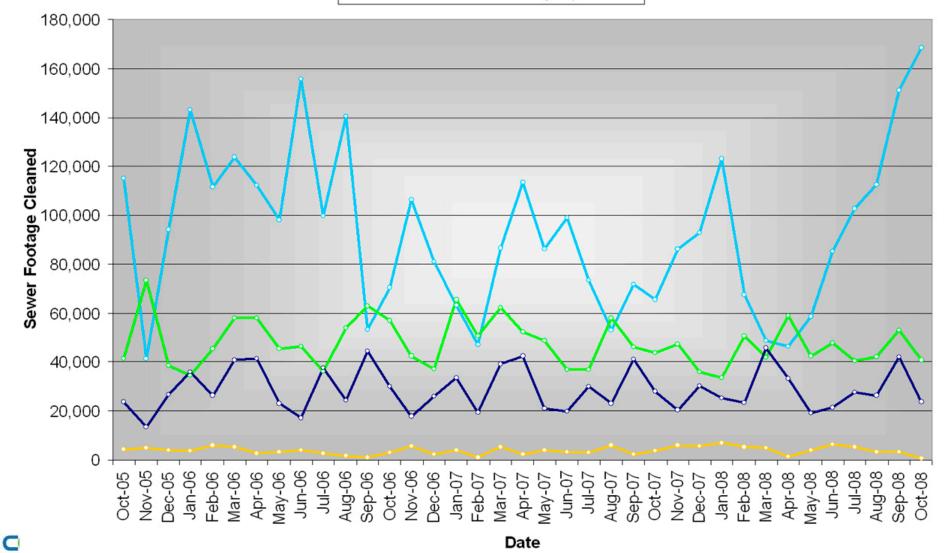
- Volume of chemicals used at WWTPs
- Number of manhole and sewer inspections
- Ratio of Total Backlog: New Work Orders per Month
- Length of sewer pipes cleaned per month
- Volume of debris removed from sewers per month

Levels of Service and Performance Management Framework



cd

DOSD Service Level Example: WIB


WIBs in Sewershed 51

DOSD Performance Measure

9,10,11, and 12. Power Cleaning: Footage by Type of Cleaning

---- PM ----- Scheduled ----- Emergency ----- EPM

Expected Benefits

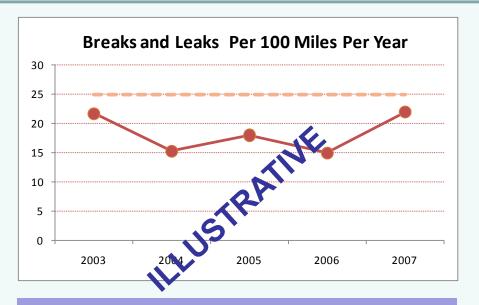
- Enhanced customer service focus
- Greater staff understanding of service levels and their relationship to day-to-day activities
- Alignment between customer expectations and DPU's mission, strategic plan, services provided

• WIB Example: Reduced WIBs **and** cost savings for customers!

Achievements to Date - LOS

- Selected and defined 30 LOS across the organization
- Assigned ownership, data collection responsibilities
- Collecting data, reviewing benchmarks
- Target setting in Fall, 2010

LOS Selection Process


Line of Business: Customer Service

	Category / Measure	Description / Comments	
1	Average Speed of Answer / Wait Time (Average Minutes of Hold / Wait Time From Connection Until a Call is Answered by Call Center Representative)	Enables tracking of overall call center performance, and can support decisions on staffing levels, coverage, and shifts. Measure can vary during peak periods of the day and can also be driven by significant short term events (i.e. change in billing procedures or widespread outages)	
2	Percent of Total Calls Answered Within Specified Goal (Percent of Calls Answered Within Target of xx Seconds or Minutes / Total Calls Received)	Related to average speed of answer measure above, but with an established target percentage (typically 90-99%) to allow for some variation, unexpected peaks, or events.	
3	Abandoned Calls as A Percent of Total Calls (Total Calls That Are Abandoned Before Speaking to a Representative / Total Calls Received)	Measure is related to average speed of answer measure above. Callers typically abandon the call after they are on hold for a greater than expected period of time. High call abandonment rates suggest that average wait time is beyond customer's normal service expectations.	
4	Percent First Call Resolution Rate (Total Calls That Are Resolved On First Contact / Total Calls Received)	Measures successful issue resolution on first contact with the call center. Measure of overall responsiveness and timely resolution of issue. Can be difficult to track - assumes ability to assign a unique work order to each open issue with caller identity.	
5	Average Response Time For Customer Correspondence (Average Response Time In Working Days From Customer Inquiry)	Measures the average response time in days for a utility customer service rep to respond to a customer inquiry via mail or e-mail from the time it is received. Measures responsiveness to customer inquiries not made through call center.	

LOS Future Reporting Templates

- Annual report to stakeholders / customers
- Present a transparent picture of utility performance
- Include narrative to describe the relevance and implications of each measure
- Future formation of "citizen advisory committees"

Water Distribution

Current Performance Trends and Issues

- Stable performance driven by rehabilitation and renewal program of 100 miles per year.
- Continued focus on oldest cast iron pipe and worst served areas.
- 2007 performance impacted by spike of 75 third party damage incidents during downtown light rail construction

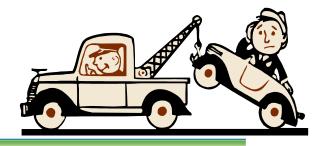
cd

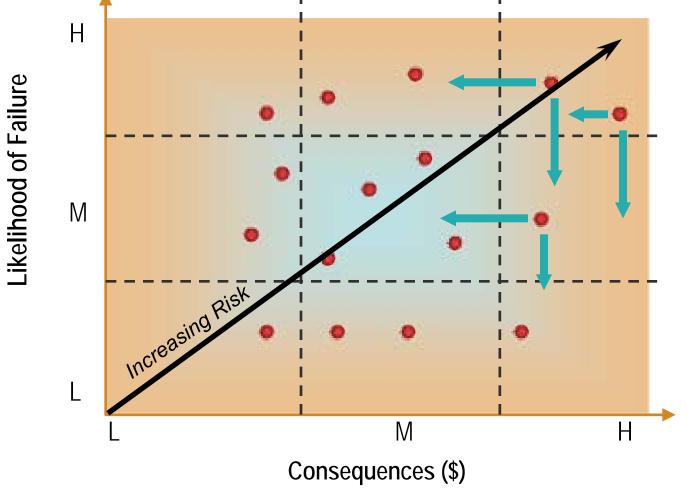
Risk

	Алания Алани	
and I the		ALCON TO A

"How do you manage risk?"

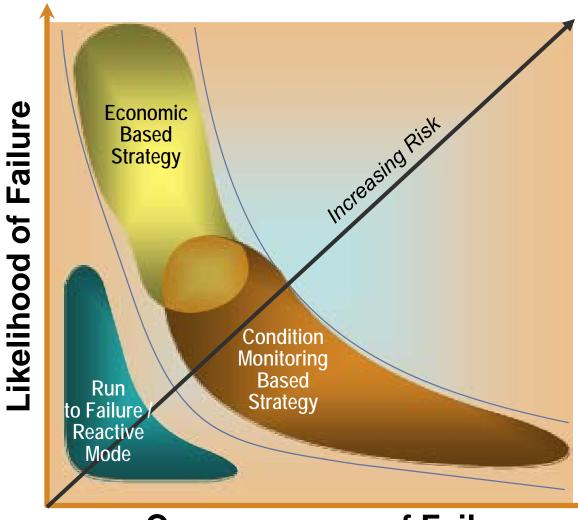
cd




Example of Risk Cost: Car Towing

- Average frequency of needing a tow for your make/model of car: 8 years
- Average towing bill: \$240
- Annualized risk cost = $240 \times 1/8 = 30$

Managing Risk


Concentrate your efforts On highest risk assets

cd

cd

Risk "Signature" -> Asset-Based Decisions

Consequences of Failure

Risk COST Definition

Annual Risk Cost (Dollar cost per year) Probability of Failure (Projected events per year)

Consequence of Failure (Dollar cost of each event)

Example of Risk Cost Calculation

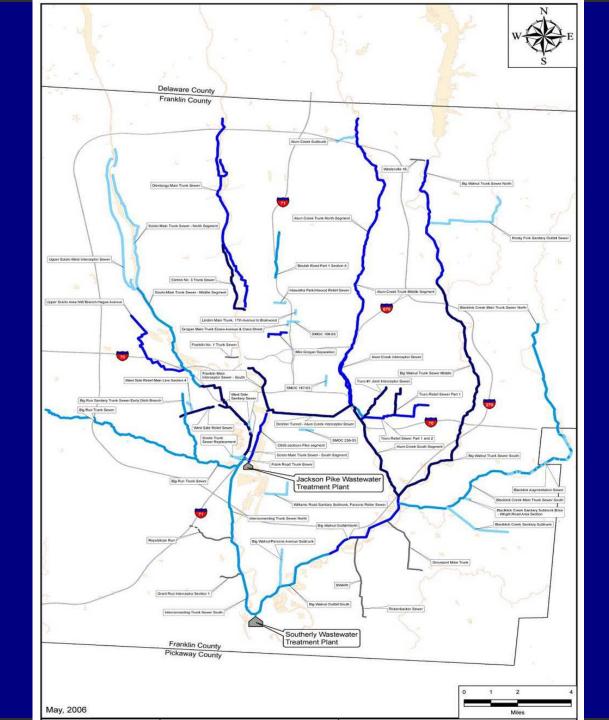
An agency is attempting to decide whether to proactively or reactively clean a segment of sewer

With no cleaning, failure would involve one basement backup every 10 years

Cost per basement backup is \$10,000

Annual Risk Cost (\$1,000 per year) Probability of Failure (10% per year)

Consequence of Failure (\$10,000 per event)


Risk Application: Prioritizing Large Diameter Condition Assessment and Cleaning Program

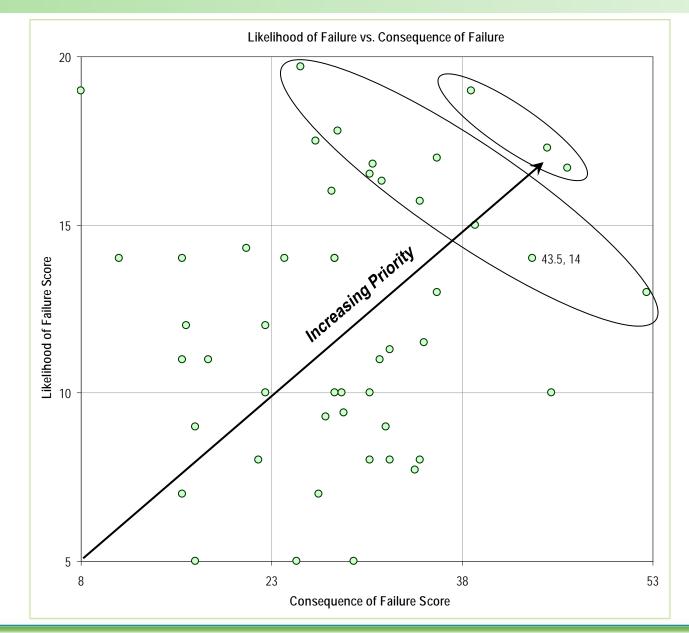
Large Diameter Pipe Risk Management Program

Program Goals

- Satisfy Consent Order
- Establish a comprehensive sewer PM Program
 - Sewer Shed Based PM progressing (small diameter)
 - Large Diameter Pipes addressed under this effort
- Gather inspection data
- Identify and prioritize R&R projects
- Identify cleaning to yield increased capacity

Risk Factor Examples

- Likelihood of Structural Failure
 - Material, Age, Tributary Wastewater Characteristics
- Likelihood of Operational Failure
 - Slope/Velocity, Debris in Tributary Area, Time Since Last Cleaning, Capacity Limitations
- Consequences of Failure
 - Depth, Diameter, Access, Overflow Potential, Proximity to Structures, Water, RR, etc.


CC

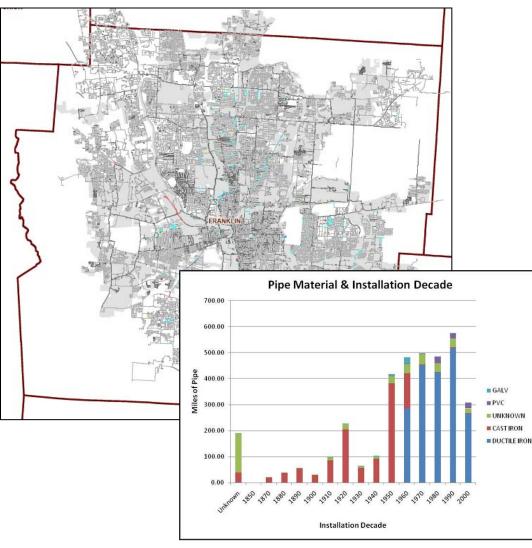
Alum Creek Interceptor Sewer	Factors That Contribute to Debris Deposition						Co	onseque	nce of F	Failure F	actors			Likelihood of Structural Failure Factors							
Trunk Sewer Sections	Pipe Material	Slope / Velocity	Age	Suspected Deficiencies		Pump Stations	Total Debris Deposition	Diameter	Average Depth	Location (weighting factor)	Land Use	Accessibility	DSR Frequency	WIB Frequency	Total Consequence of Failure	Age	Pipe Material	H2S Prone	Total Likelihood of Failure	TOTAL	Last Cleaned (Year)
42 inch Section	3	3	5	0	0	0	11	1	1	3	3	5	0	0	14	5	3	0	8	33	
48 inch Section	3	3	5	2	0	0	13	1	1	2	3	5	0	0	12	5	3	0	8	33	
60 inch Section	3	3	5	4	0	0	15	2	1	4	3	3	0	0	18	5	3	0	8	41	
																			ĺ		
																			j		
																				1	

* Field knowledge that will affect this program includes knowledge of areas prone to debris or areas not prone to debris ** Conclusions from Last Cleaning should include an indication of whether or not Condition Assessment was Performed and if so, what pipe conditions were encountered. Please not if TV logs/tapes are a

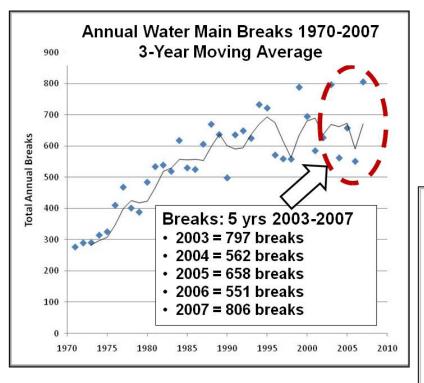
cd

Sewer System Evaluation Results

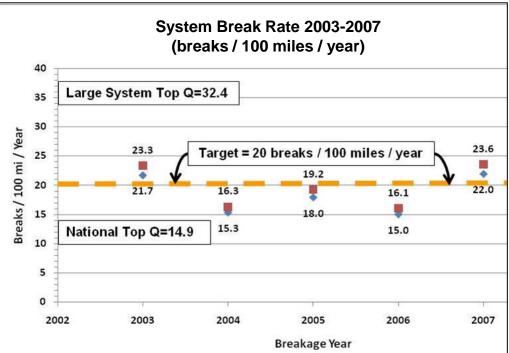
Progress on Large Diameter Sewer Inspection Program


- Cost savings of over \$5 million achieved to date by inspecting before cleaning (using sonar technology)
- Inspected nearly 30 miles of largediameter sewers
- Identified significant structural defects that would have otherwise been undetected
- Condition data and cost estimates used to quantify risks of defects and compare riskcosts to the cost of mitigation projects

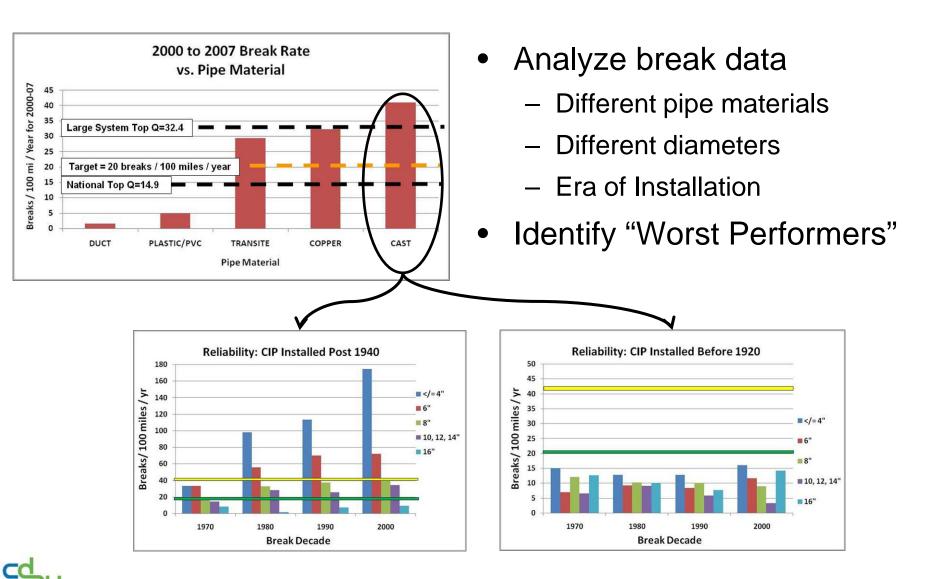
Risk Application: Prioritizing Water Main Replacement

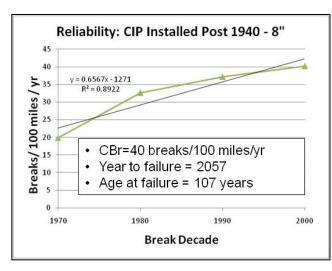

Columbus Water Distribution System

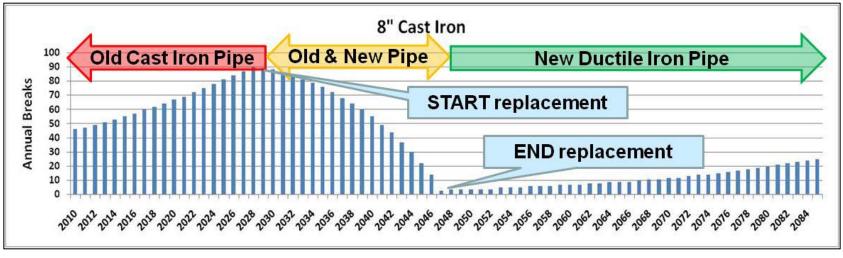
- Miles of Water Main
 - 3,665 total miles
 - 3,399 miles </= 16"</p>
- Materials
 - 53% Ductile Iron
 - 31% Cast Iron
- Size
 - 65% is 6" to 8" pipe



- Age
 - 75% installed since 1970


System Wide Breaks for 50-Yr Main Replacement Planning


- System Wide Preliminary Target:
 - 20 breaks / 100 miles / year


Evaluate Water Mains Compared to Service Level Targets

Develop Pipe Classes and Estimate Remaining Service Life

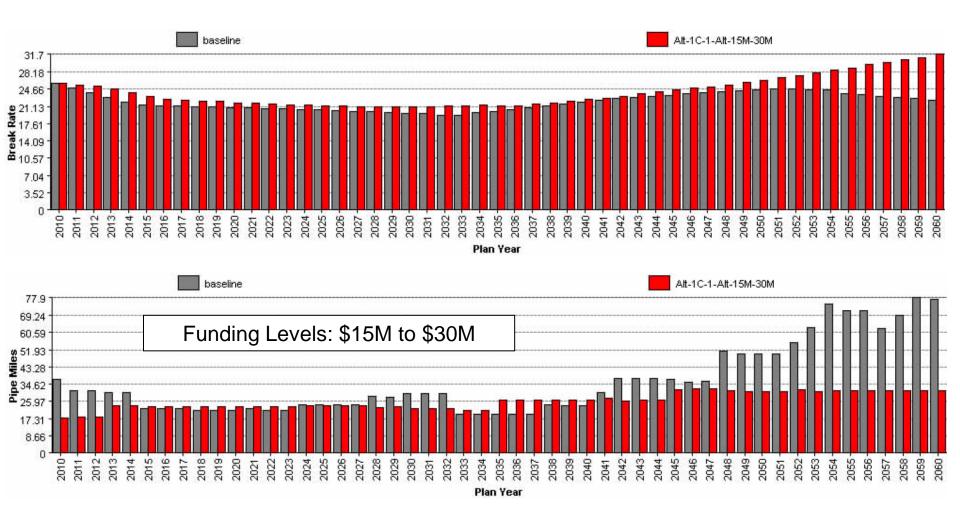
- Over 30 Pipe Classes Identified:
 - Material, Size, and Installation Era
- Pipe Effective Service Life:
 - Estimated based on break rate targets and system wide impacts

Develop Water Main Prioritization to Achieve Service Level Targets

- Pipe Condition: Score 1 5:
 - Age relative to effective life
 - Break rate relative to service levels
- Pipe Criticality: Score 1 5:
 - Pipe size, location, critical customer
- Priority = Condition x Criticality

	Water Main Priority										
Score	Priority Group	Pipe Length =16"<br (miles)									
2-10	Lowest Risk	2,241									
11-20	Moderately Low Risk	699									
21-30	Moderate Risk	35									
31-40	Moderately High Risk	4.6									
41-50	Highest Risk	3.4									

	Break Rate	BrScore	Miles
	<=10	1	1964
	11 to 30	2	209
	31 to 45	3	353
TERMIN 177	46 to 60	4	141
	>60	5	345


Estimate Annual Replacement Required to Achieve Service Levels

- Apply pipe priority scoring
- Locate pipes on GIS
- Evaluate replacement options
- Develop cost projections

Mat	Type	Diam	Decade	Miles	C-Age	CBr	Pty	LBr	HBr	SrtYr	EndYr	F-Age	Yrs	Mi/Yr
GALV	All	2	All	0.1	70	288	50	40	50	2010	2010	70	1	0.10
CI	All	6	>1940	1.7	60	73	50	40	50	2010	2014	64	5	0.34
CI	All	4	>1940	0.3	60	158	40	40	60	2010	2010	60	1	0.30
CI	All	6	>1940	1	60	73	40	40	60	2010	2010	60	1	1.00
CI	All	4	1920-40	0.3	80	60	40	40	60	2010	2010	80	1	0.30
CI	All	6	1920-40	1.7	80	51	40	40	60	2010	2012	82	3	0.57
CI	All	8	>1940	1	60	40	40	40	60	2010	2010	60	1	1.00
GALV	All	2	All	1.4	70	288	30	40	80	2010	2014	74	5	0.28
CI	All	4	>1940	0.3	60	158	30	40	80	2010	2010	60	1	0.30
CI	All	6	>1940	9.3	60	73	30	40	80	2010	2014	64	5	1.86
CI	All	4	1920-40	0.1	80	60	30	40	80	2010	2010	80	1	0.10
CI	All	6	1920-40	6.3	80	51	30	40	80	2010	2033	103	24	0.26
CI	All	8	>1940	6.8	60	40	30	40	80	2010	2057	107	48	0.14
CI	All	8	1920-40	2	80	36	30	40	80	2010	2048	118	39	0.05
CI	All	10	>1940	6	60	34	30	30	80	2010	2078	128	69	0.09
CI	All	10	1920-40	0.8	80	28	30	30	80	2010	2010	80	1	0.80
CI	All	16	1920-40	0.4	80	23	30	25	60	2010	2010	80	1	0.40
CI	All	16	<1920	0.2	105	14.3	30	25	60	2010	2010	105	1	0.20

Comparison of Rehabilitation Options for Water Mains													
Criteria Wethod	Structural (Internal)	Structural (External)	Requires Excavation for Connections	Diameter Range	Insertion Pit Required	Shot Lengths (LF)	Provides Internal Corrosion Protection	Provides External Corrosion Protection	Reduces Diameter (But Improves H-W C-value)	Service Life Extension (Years)	Comments		
Epoxy Resin	No	No	No	Any	No	200 to 400	Yes	No	Yes	30	Not for pipes with joint leaks or holes, etc.		
Cement Mortar Lining	Yes	No	Yes	4"-24"	No	300 to 700	Yes	No	Yes	50	Do not use for soft or acidic waters		
Close Fit Sliplining	Yes/No Thickness Dependent	Yes/No Thickness Dependent	Yes/No iTAP Possibility	4"-24" Method Dependent	Yes	500 to 1200	Yes	Yes or No	Yes	20-50	Life extension depends on whether lining is structural/non-structural		
Conventional Sliplining	Yes	Yes - No strength added to host pipe	Yes	8"-24"	Yes	200 to 1000	Yes	Yes	Yes	50	Can be done with D.I., PVC, HDPE, Steel, and FRP		
Cured-In-Place Pipe (CIPP) Non or Semi Structural	Yes or No	No	No w/ itap	2"-12	8-193	A.	-743	-1 ⁸	ally -				
Cured-In-Place Pipe (CIPP) New Structural	Yes	Yes	No w/ itap	6"-24						P			
Pipe Bursting	Yes	Yes	Yes (very invasive)	4"-54									

"What If" Scenarios can Test Funding Strategies Versus Service Level Targets

cd

cd

Business Case Evaluations (BCE)

Business Case Evaluation

- BCE is a decision making process
- In private sector businesses, projects must benefit the "bottom line"
- For municipal utilities, decisions are made based on Level of Service, Cost, and Risk
 - Project costs must be lower than the value of increased service levels or reduction in cost or risk-cost

BCE Purposes: Utility Sustainability

- BCE's support utility sustainability by:
 - Filtering unneeded projects out of the CIP
 - Ensuring CIP has better value for customers
 - Enhancing prioritization of projects
 - Providing transparency in decision-making

Costs Include Triple Bottom Line Values

- Triple Bottom Line:
 - Financial Costs/Benefits
 - Social Costs/Benefits
 - Environmental Costs/Benefits
- In a BCE, assigning dollar values to TBL costs allows for more consistent, less subjective decision making

Example of Multi-criteria Analysis

Consider a sewer replacement project that is evaluating open-cut versus tunneling construction methods

Alternative	Cost	Non-monetary factors score (traffic delay)
Open Cut	\$150,000	1 (very bad)
Tunneling	\$200,000	5 (great)

Example of Application of TBL Cost

1,000 vehicles/day delayed, average delay 15 minutes, construction takes 10 days, assume that the average vehicle would pay \$10 to avoid a 15 minute delay:

(1,000 vehicles/day) x (10 days) x (\$10/vehicle) = \$100,000

Alternative	Cost	TBL Social Cost of a Traffic Delay
Open Cut	\$150,000	\$100,000
Tunneling	\$200,000	\$5,000

cd

TBL Examples: Financial

	Criteria
1	Initial capital costs for design / construction
2	Depreciation or allowance for R&R (based on expected life)
3	Ongoing annual O&M costs
4	Asset Disposal / Salvage Value

TBL Examples: Social

	Criteria
1	Service level improvement/reduction (interruptions, leaks, power quality, backups, customer complaints, etc.)
2	Impact on community economic development
3	Traffic disruption
4	Impact on public / DPU health and safety
5	Other public nuisance (noise, aesthetics, etc.)

Other categories to consider for the future include: potential property damage, affordability, public image. Service level categories can be broken down in further detail.

TBL Examples: Environmental

Criteria

- 1 Risk of environmental damage (from spills, overflows, etc.)
- 2 GHG and other emissions
- 3 Overall water quality / watershed sustainability
- 4 Overall biodiversity / aesthetics / public use

Other categories to consider for the future include: land use, water loss, wastewater and solid waste generation, chemical usage, habitat and wildlife

Business Case Framework

New Pumping Station X

1. Description and Purpose / Define Problem

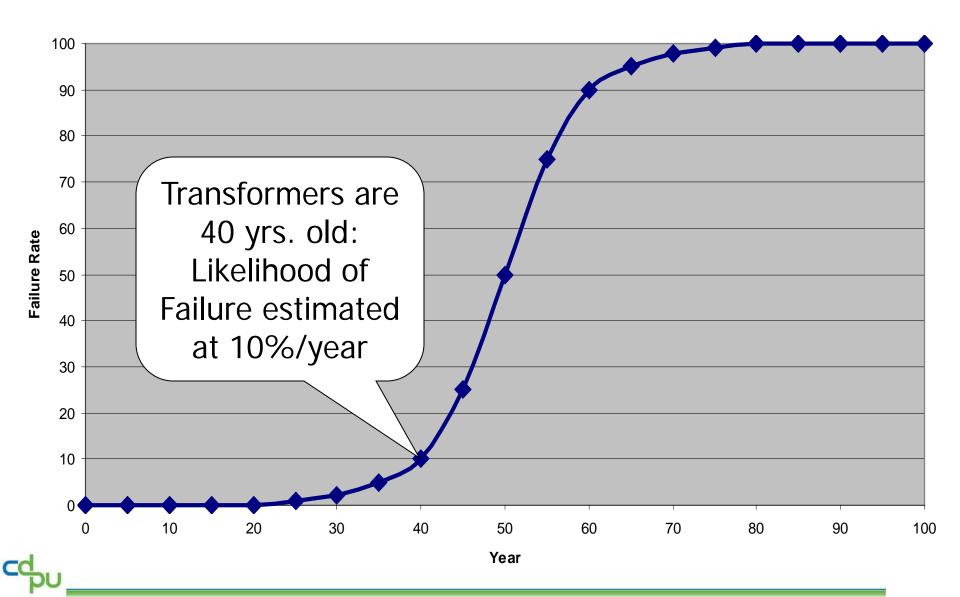
- 2. Summary of Alternatives Evaluated
- 3. Service Level (Customer, Environmental, Regulatory) Impact
- 4. Condition, Criticality, and Risk Analysis
- 5. Project TBL Cost Analysis Estimating guidelines and accuracy Funding source Financial Condition
- 6. Other Issues and Recommendations

BCE Pilot Process

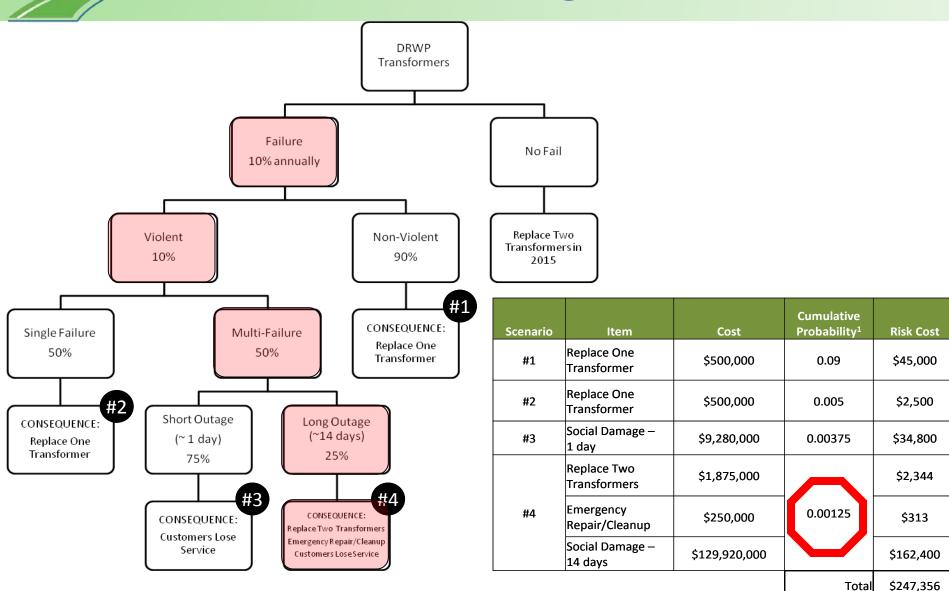
- 10 pilot BCEs were conducted in 2009 Pilot process goals:
 - Collect lessons learned
 - Improve the process
 - Understand resource demands
 - Set realistic thresholds for future BCEs
- Targeting full implementation by late 2011

BCE Case Study:

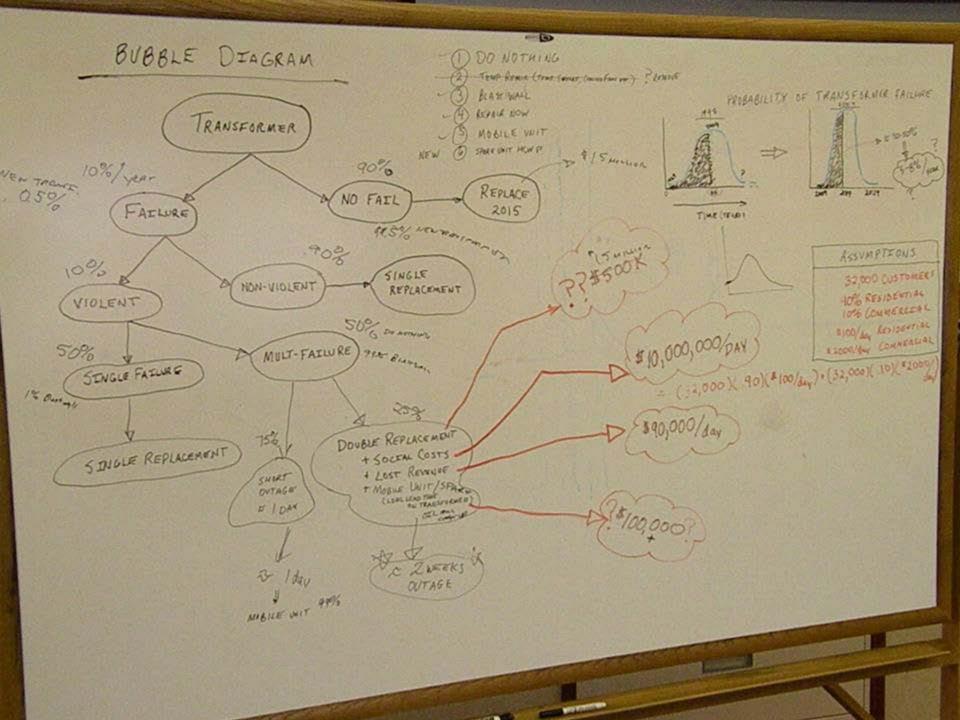
Addressing the Risk of Aging Transformers at a Water Treatment Plant


Dublin Rd. WTP Transformers

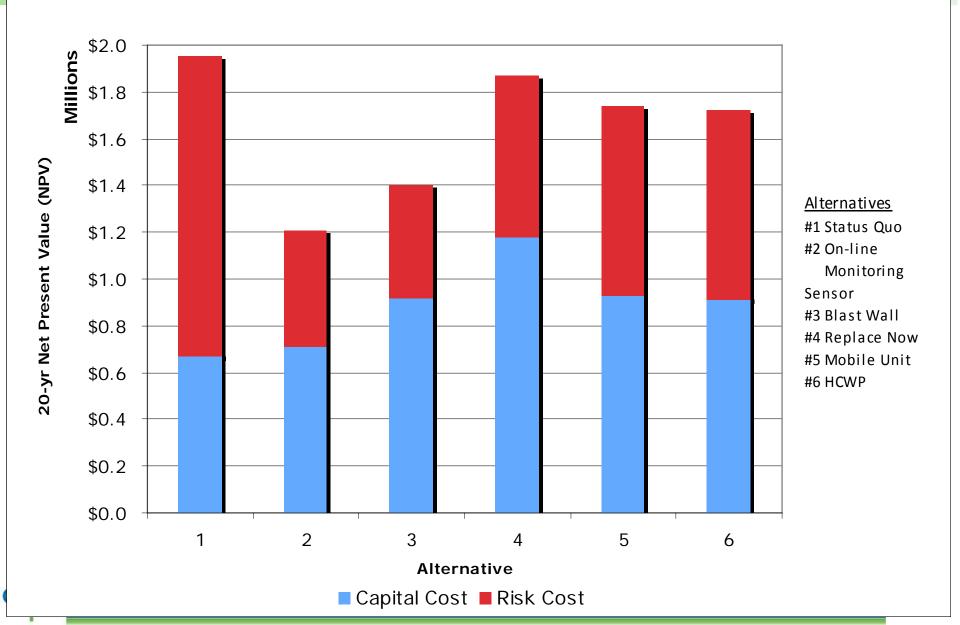
- Two 5 MVA Transformers (primary and backup)
- Both Installed in 1969
- If both fail, 32k customers lose water service
- Upgrade necessary by 2015 – plant expansion
- Transformers have good
 maintenance history



Plant staff: "We should replace the transformers now!"


Transformer Failure Rate Curve

Risk Diagram



¹ The cumulative probability (CP) is the product of the probabilities (e.g. Scenario #2, CP = $10\% \times 10\% \times 50\% = 0.005$)

R 19	Aicrosoft Excel - DRWP TRANSFORM	MER EVAL - FI	NAL							_	
	Eile Edit Yiew Insert Format I	[ools <u>D</u> ata <u>)</u>	<u>M</u> indow <u>H</u> elp						Type a question	n for help 🛛 👻	-8×
D	😂 🖬 🔒 🛐 🎒 🕼 🖤 👗 🎙	🖹 🗠 📲 🍓	Σ • 🛃 🛍	🕐 🐥 Aria	al Narrow	• 11 • J	B I <u>U</u> ≣		\$ % 🗐	🗉 • 🥭 • 🛽	<u> </u>
	N26 - fx =0.4*upgra	ide+capital									
	F (н		J	K	L	M	N	0	P	
4	Project Business Case Analysis										
6	Alternative 1					1					
7	Project Name:	Do Nothing									
10		10.0%	Failure Rate (%)	10.0%	Violent Failure %	50.0%	Multi-Failure R	at 25.0%	Long Outage %	75.0%	Sho
12		Assumptions						14.0	Days	1.0	Day
14		5.0%	Discount Rate, or	r Cost of Capital (%)						
16		3.0%	Inflation Rate (%)) (Optional)							
18	No Risk Premium, Input dollars for year	shown									
20	Financial Analysis	0	1	2	3	4	5	6	7	8	
22	1. Project Costs	2009	2010	2011	2012	2013	2014	2015	2016	2017	
24	Financial Costs			City of Colu Assume \$9000)0/day						
26	Project Capital Costs			subject area		ty of Columbus:		\$ 900,000	1		
28	ofor Rehab & Replacement / Depreciation			/ᢪ└────		sume \$250,000 for hergeny repair (i.e. m	obile				Ť
30	Ongoing O&M Costs					it or other repair)					Ť
32	Asset Disposal Costs										Ť
34	Lost Revenue if Failure		\$ 1,913	\$ 1,913	\$ 1,913	\$ 1,913	\$ 1,913	\$ 1,913			
36	Emergency Replacement if Failure		\$ 313	\$ 313	\$ 313	\$ 313	\$ 313	\$ 313			
38	Single Replacement if Failure		\$ 47,500	\$ 47,500	\$ 47,500	\$ 47,500	\$ 47,500	\$ 47,500			
40	Full Replacement if Failure		\$ 2,344	\$ 2,344	\$ 2,344	\$ 2,344	\$ 2,344	\$ 2,344			
42											\Box
44	Social Costs										
46	i.e., Complaints, Outages, Breaks/Leaks)		\$ 212,500	\$ 212,500	\$ 212,500	\$ 212,500	\$ 212,500	\$ 212,500			
48	ct on Community Economic Development										
50	Travel Disruntion			ite of Columbus		- Lucine -	1000				
Read	► N Summary Do Nothing (type)	Un-Line Monito	ring / Blast W	all / Replace N	iow X Mobile U	nit <u>X HCWP</u> Sj	bare / CALCU			NUM	•
-			ocoft Event DD					Search Desktop	P .		3:02 PM
	Start 📄 🧰 Financials	Micr	osoft Excel - DR					o di chi pestitop	S		0.02 PM

Expected Life-cycle Costs

Final Ranking of Alternatives

- 1. On-line Monitoring
- 2. Blast Wall
- 3. Spare from HCWTP
- 4. Mobile Unit
- 5. Replace Now
- 6. Do Nothing

Original 2 Options

Early Growing Pains with BCEs

- Risk diagram, statistical methods, and lifecycle costing are not commonly understood or practiced
- TBL: difficult to conceptualize and trust assignment of \$ values to "externalities"
- Roles: Let your SMEs be SMEs, not economists or statisticians
- When data is not available, ownership of assumptions (e.g. TBL values) is important

Benefits Exceed BCE Results

- Staff realized defining the problem is critical
- BCEs fostered collaboration
- BCEs offered a practical application of risk, lifecycle cost analysis, and triple bottom line
- Decision making is more data driven
- Staff more comfortable making assumptions when data is not available

cd

Conclusions / Results

Conclusions and Results

- AM Implementation can be comprehensive or can be implemented in phases
- AM is a change in how people think, and can takes time and solid commitment
- AM can bring results quickly, and results can take on many shapes
- AM is developing rapidly learn from others' experiences

Questions?

For more information, contact:

Kevin Campanella, PE Assistant Director – Asset Management Department of Public Utilities - City of Columbus mail: Director's Office - 4th Floor, 910 Dublin Road, Columbus, OH email: kvcampanella@columbus.gov phone: 614-645-7117

Columbus Department of Public Utilities