BUILDING A NORLD OF DIFFERENCE

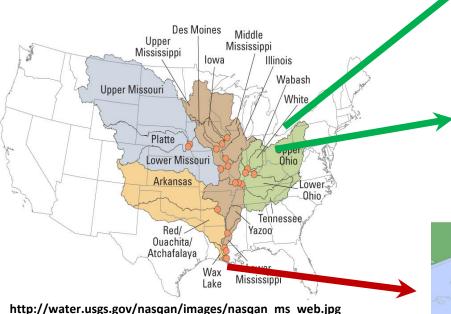
More Affordable, Reliable and Recoverable Nutrient Removal

Jim Fitzpatrick Senior Process Engineer

OWEA 2017 Technical Conference and Exhibition June 26-29, 2017 Cincinnati, Ohio

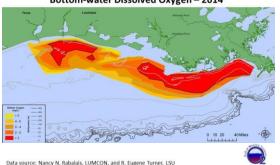
Agenda

- Drivers
- Optimize conventional treatment
- Avoid unintended consequences
- Wet-weather strategies
- Closing thoughts and open discussion



Drivers

- Aquatic ecology
- Agricultural needs
- Regulatory pressures
- Economics


Near and far. Large and small. Point and non-point.

Bottom-water Dissolved Oxygen – 2014

Data source: Nancy N. Rabalais, LUMCON, and R. Eugene Turner, LSU Funding sources: NOAA Center for Sponsored Coastal Ocean Research and U.S. EPA Gulf of Mexico Progra

Phosphorus → freshwater harmful algal blooms (HAB) Nitrogen → Estuary and marine eutrophication and hypoxia

DANGER

OID ALL CONTACT

201

THE WATER

XINS AT UNSAFE LEVEL

Ohio regulatory strategies

Similar to Others in Great Lakes and Upper Ohio River Watersheds

- Increased monitoring, research, and planning
- Integrated and adaptive watershed management
 - 1. Agricultural \rightarrow Best management practices (BMPs)
 - 2. Urban Stormwater \rightarrow Overflow control, green infrastructure
 - 3. POTWs \rightarrow Tiered technology-based limits (BNR, ENR, LOT, etc.)

Historical costs of different practices

Source: WEF (2015) The Nutrient Roadmap, Figures 5.12 and 5.13

Low hanging fruit:

- Phosphorus removal \rightarrow POTW
- Nitrogen removal → Agriculture (sometimes POTW)

Not a substitute for project-specific alternatives evaluations and opinions of probable costs

VEA2017

Optimize conventional treatment

- Phosphorus removal
- Fermentation and VFA
- Side-stream EBPR (S2EBPR)

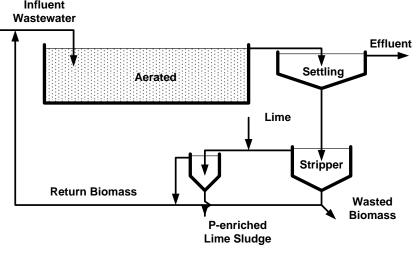
Early phosphorus removal

High-rate activated sludge

- No nitrification
- All influent to aeration basin

• RAS stripper tank

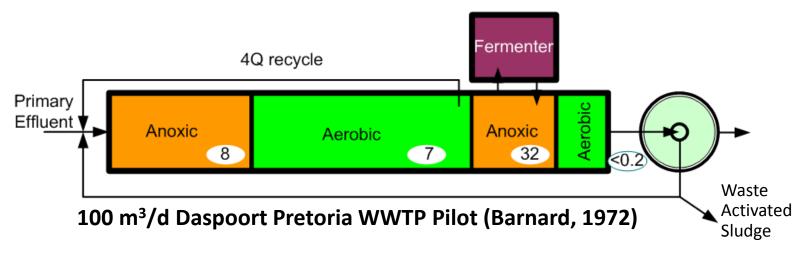
• 30-40 hr SRT


VEA2017

• P release from deep anaerobic conditions

Supernatant treated with lime

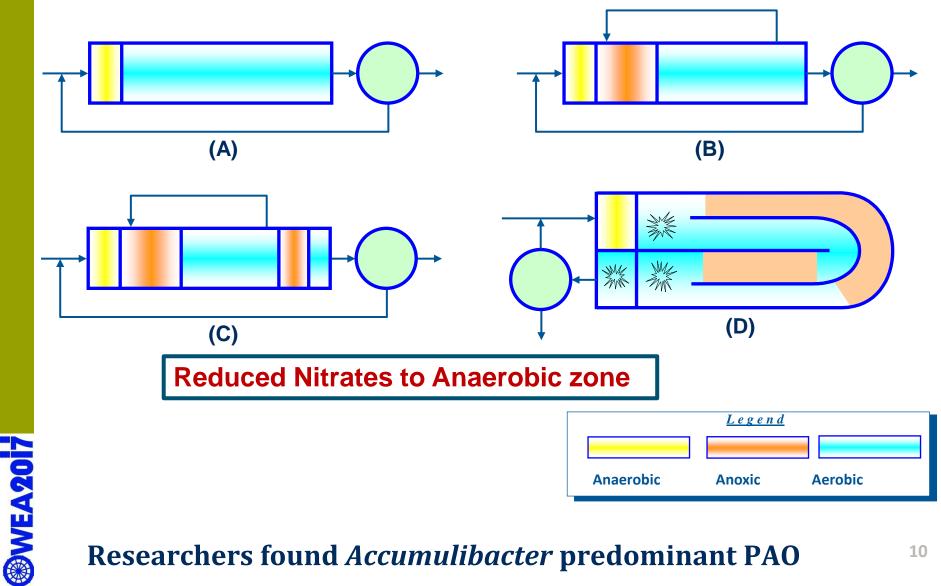
- P removed as calcium hydroxy-apatite, Ca₁₀(PO₄)₆(OH)₂
- Fuhs & Chen find phosphate accumulating organism (PAO)


In hindsight...side-stream RAS anaerobic zone and P crystallization, mainstream P uptake

Phostrip Process (1962)

Mixed liquor fermentation (MLF)

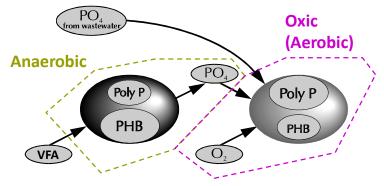
- Fermenter basin not deemed important at the time
- Excellent phosphorus removal resulted that could not be replicated in laboratory
- Barnard suggested biomass (with PAO) should pass through anaerobic phase with low ORP to trigger EBPR
- Suggested Phoredox process by adding anaerobic zone

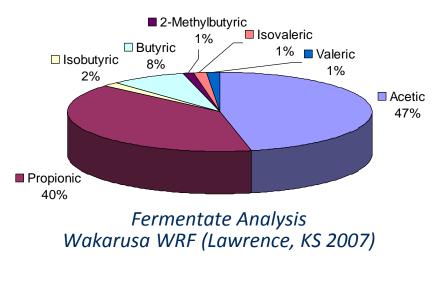


Original EBPR pilot had <u>side-stream</u> anaerobic mixed liquor fermenter zone

TEA20

9

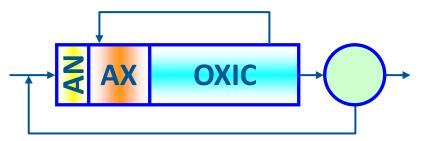

Phoredox process flow sheets


Researchers found Accumulibacter predominant PAO

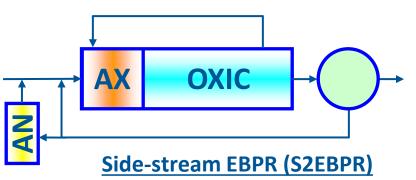
Conventional thinking for EBPR

- Volatile fatty acids (VFAs) drive EBPR mechanism of PAO
- Anaerobic zone required
- Mixture of VFAs required for PAO to outcompete glycogen accumulating organisms (GAO)

PAO Luxury Uptake Mechanism (Fuhs & Chen, 1975)



First Primary Sludge Fermenter (Kelowna, BC 1979)


11

New reality for EBPR

Traditional EBPR

- Mainstream anaerobic zone
- Accumulibacter needs VFA to trigger luxury uptake of phosphorus in oxic zone.

- Side-stream anaerobic fermenter
- *Tetrasphaera* produces VFA <u>and</u> uptakes P in anoxic/oxic <u>and</u> denitrifies in anoxic zone.
- Works together with Accumulibacter
- Deep anaerobic conditions fatal for GAOs

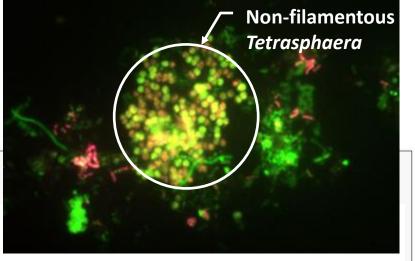
Good news for weak influents and wet weather!

- More efficient use of influent carbon for TP and TN removal
- Less need for chemicals (ferric, alum, methanol, etc.)
- Side-stream is less impacted by wet weather flows

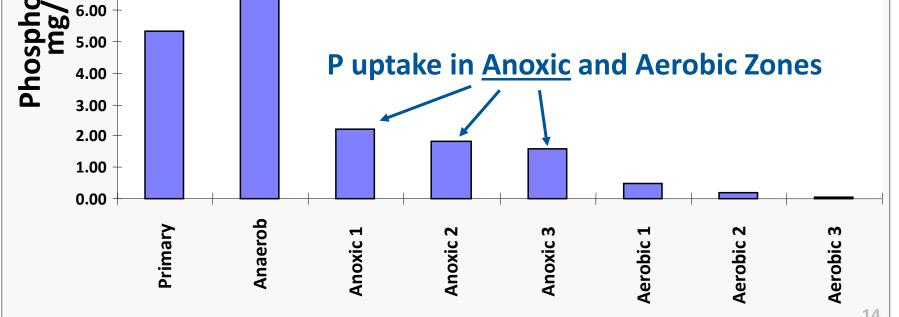
Central Okanagan

Westside Regional WWTP, aka "West Regional District of Bank WWTP" (West Kelowna, BC)

< 6 mg/LTN < 5 mg/L BOD < 2 mg/L TSS TP < 0.15 mg/L

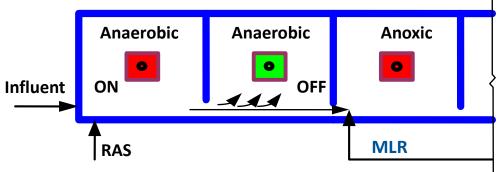

Westside Regional WWTP

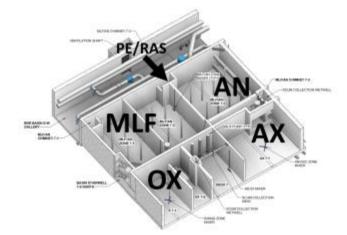
10.00


9.00

8.00

7.00

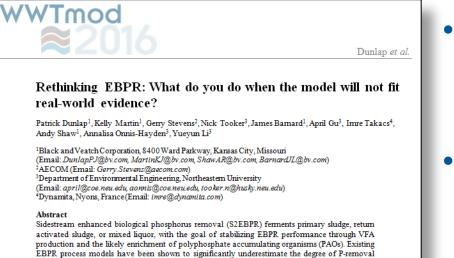

Tetrasphaera ferment and denitrify. Non-filamentous variety also PAO.


Other S2EBPR examples

RAS or Mixed Liquor Fermenters

- Sacramento, CA
- Olathe, KS
- West Kelowna, BC
- Pinery AWWTP, CO
- Henderson, NV
- Blue Lake & Seneca WWTP, MN
- Joppatowne, MD
- South Cary, NC
- St. Cloud, MN

In-line Fermenter (Pinery, Henderson, St. Cloud, etc.)


S2EBPR for 181-mgd BNR EchoWater Project (Sacramento, California)

Off-line Fermenter with 5-stage Bardenpho 5.3-mgd Cedar Creek WWTP (Olathe, Kansas)

Worldwide: 75+ S2EBPR facilities in 10+ configurations

S2EBPR model development

when S2EBPR is implemented. In this study a framework is presented of new model approaches

and a new conceptual EBPR model is developed for one of them based on lab-scale experiments and full-scale S2EBPR process data. We propose three new PAO model structures that vary in

NEA20

- B&V team with Northeast University and Dynamita to develop S2EBPR model for future ASM update.
- In the meantime, we have design criteria from real-world operations, and "work-arounds" with current ASM-based software (BioWin, GPS-X, etc.).
- Why did profession miss this until now?
 - Tetrasphaera need ORP ≤ -250 mV; most anaerobic zones struggle to get -150 mV
 - Impossible to achieve with NO₃ or DO present
 - Turbulence, air entrainment, or coarse bubble air mixing prevent low ORP
 - Weak and fresh influent dilutes VFA
 - Mixing energy too high (>0.08 hp/kcf)

16

Other reasons for BNR

• Increased process stability and clarifier capacity

 Biological selector helps prevent sludge bulking, decrease sludge volume index (SVI).

Side benefits from denitrification

- Recover some alkalinity. Better nitrification and effluent buffering.
- Offset some O₂ demand. Potentially lower aeration costs.
- More stable sludge blanket in secondary clarifier.
- Potential nutrient recovery

WEA20

It's not just about effluent quality

Avoid unintended consequences

- Solutions to biosolids impacts
- Struvite
- Brushite

Making BNR work with anaerobic digestion

Causes

- PAOs in WAS anaerobically release (PO₄)³⁻, Mg²⁺ and K⁺.
- NH₄⁺ released later during digestion.

Consequences

- Nutrient recycle
- Struvite scaling
- Vivianite scaling if Fe²⁺ present
- Decreased biosolids dewaterability

From Shimp, G.F.; Barnard, J.L.; Bott, C.B. It's always something. Water Environment & Technology, June 2014, 26(6), 42-47.

Important for reaching energy, carbon footprint and nutrient goals...sustainably.

AirPrex with

Recovery

NuReSys with Recovery

> Struvite Recover

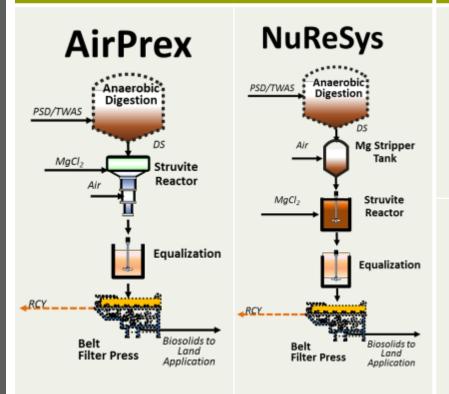
Struvite

Turn struvite problem into the solution

Struvite Sequestration

Struvite Recovery

Ostara


WASSTRIF

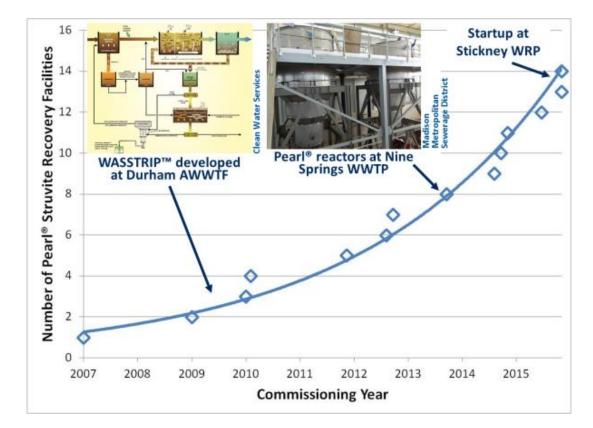
& Pearl

Multiform

Harvest

NuReSys Hybrid

- Struvite crystals remain in biosolids
- Optional recovery add-on


- Struvite crystals separated from biosolids as separate fertilizer product
- Decrease P content of biosolids

Project-specific evaluation and selection

Side-stream crystallization gaining traction

Main Goals

- Minimize nuisance scaling and deposits
- Improve biosolids dewaterability
- Reduce P & N
 recycle loads
- Decrease P content of biosolids
- Recover fertilizer product

WEA2017

Struvite choices include Ostara Pearl®, MHI Multiform™, CNP AirPrex®, Schwing Bioset/NuReSys®, Paques PHOSPAQ™, KEMA Phred™ and DHV Crystalactor®

Also CNP CalPrex[®] for brushite recovery from acid-phase digester ²¹

World's largest nutrient recovery facility

- 1.4 BGD capacity
- TP ≤ 1 mg/L (1 Feb 2018)
 - Optimize EBPR
 - Reduce TP recycle
- Predicted struvite recovery
 - 5,350 lb/day PO₄-P
 - 7,700 ton/yr fertilizer

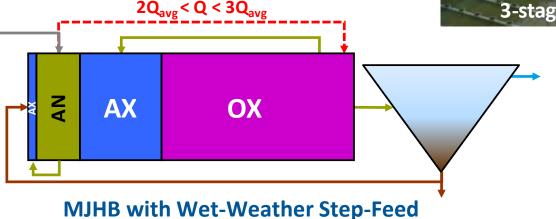
16-mgd Liverpool WWTP Medina County, Ohio

Design-build improvements to be completed in 2019

• Includes struvite sequestration + S2EBPR

Criterion	Pearl + WASSTRIP	AirPrex w/ Harvesting	AirPrex	Degas + Ferric	Ferric
1. WWTP Performance					
Reduce nuisance precipitate formation	High	Medium	Medium	Medium	Low
Improve phosphorus removal capacity	High	Medium	Medium	High	Medium
Improve reliability to meet TP limits	High	Medium	Medium	Medium	Medium
Offers improvements to the dewatering process	High	High	High	Medium	High
2. Environmental / Health / Social / Economic					
Perform nutrient recovery	High	Medium	Low	Low	Low
Reduce chemical sludge quantity produced/disposed	High	High	Medium	Low	Low
3. Financial					
Net Present Value of alternative	High	Medium	Low	Medium	Medium
Capital costs of alternative	High	Medium	Low	Medium	Medium
4. Risk Assessment					
Technological track record	Medium	Low	Low	High	High
Manpower hours and skill required	Medium	Medium	Medium	Low	Low

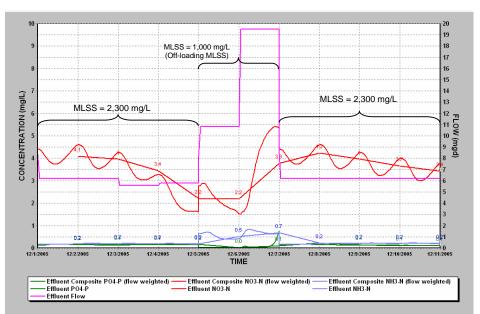
Energy savings performance contract reduces risk to County ²³


Wet-weather strategies

- Don't upset your BNR bugs
- BNR can be designed to "weather the storm"

Deep step-feed helps "weather the storm"

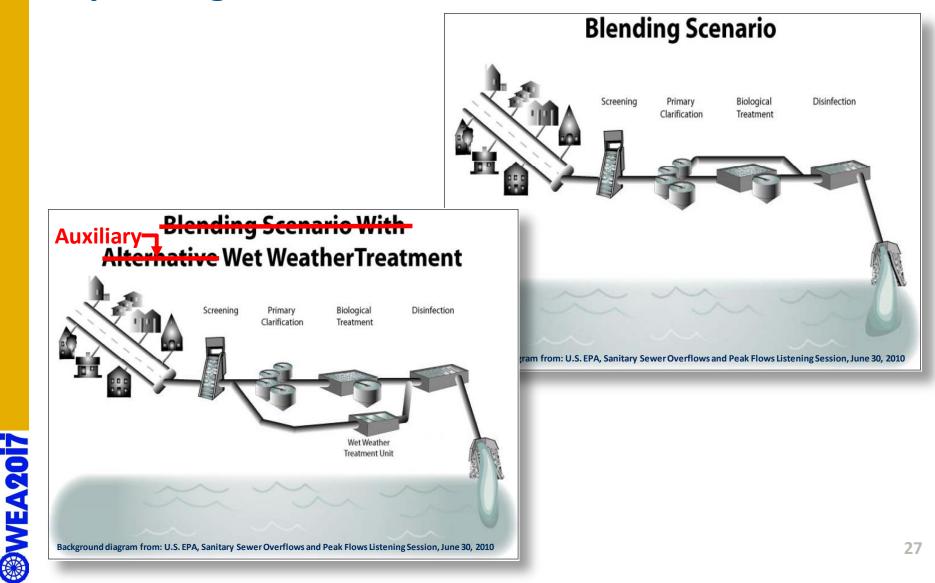
- Temporary change to contact stabilization mode for wetweather flows
- "Biological contact" or "biocontact"
- Good fit for plug-flow or stepfeed basins



Maximizing biological treatment of wet-weather flows

Biomass transfer accomplishes same thing

- Transfer some RAS or MLSS to offline storage.
- Return biomass after storm flows pass.
- Good fit for complete-mix baxins, oxidation ditches, etc.

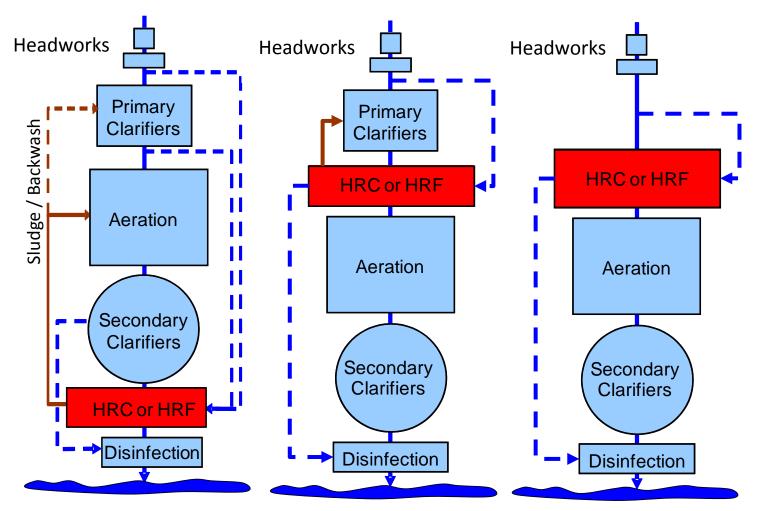


BioWin Process Model

Offline Biomass Storage of RAS Transfer Operations Rogers, Arkansas 5-stage Bardenpho with Oxidation Ditch Another way to reduce SLR to clarifiers... temporarily.

Blending or auxiliary treatment for higher peaking factors

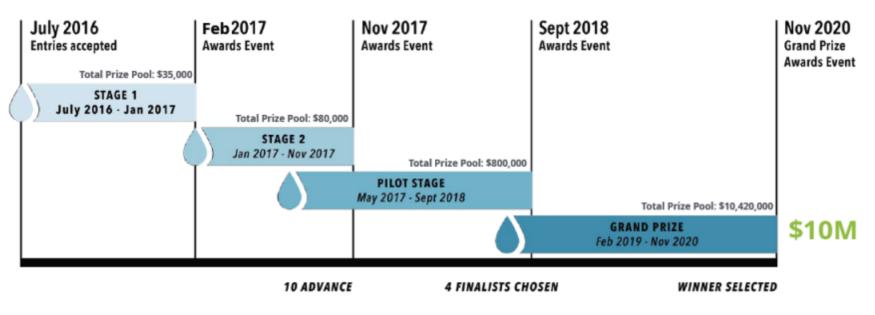
Auxiliary treatment example


Parameter	Average Effluent (mg/L, 2007-2009)	
TSS	21	
CBOD ₅	22	
ТР	0.3	

/EA201

- Activated sludge trains
 - 70-mgd annual average
 - 195-mgd peak
- Parallel HRC trains
- Total 400-mgd peak capacity

Consider dual-use for both dry and wet weather benefits


Examples include Fox Metro, IL; Rushville, IN; Johnson County, KS; Little Rock, AR

Closing thoughts and open discussion

Seeking radically cheaper technology for <0.01 mg-P/L

Prize Structure

Stay tuned!

- <u>http://www.barleyprize.com/</u>
- #barleyprize
- B&V on judging panel

Building a world of difference. Together

Jim Fitzpatrick Senior Process Engineer 913.458.3695 | <u>FitzpatrickJD@bv.com</u>

James Barnard Global Practice & Technology Leader 913.458.3387 | BarnardJL@bv.com

Sid Sengupta Client Services Director 513.936.5121 | <u>SenguptaS@bv.com</u>

Diane Sumego Client Services Director 913.458.4799 | <u>SumegoD@bv.com</u>