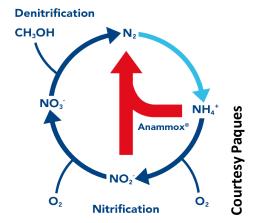
BUILDING A WORLD OF DIFFERENCE

Deammonification: Is it Right for You?

Ting Lu, PhD, PE Jim Fitzpatrick, PE

OWEA 2015 Technical Conference and Exhibition June 22-25, 2015 Kalahari Convention Center, Sandusky, Ohio

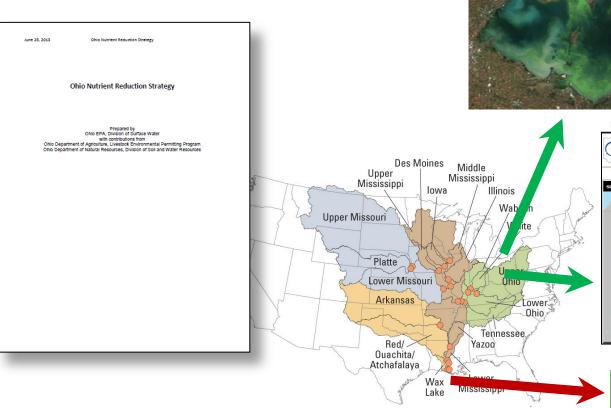

Outline

Background and Overview

Case Studies

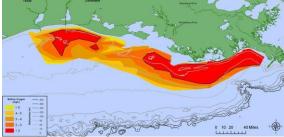
Conclusions

Nitrogen Cycle

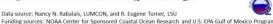




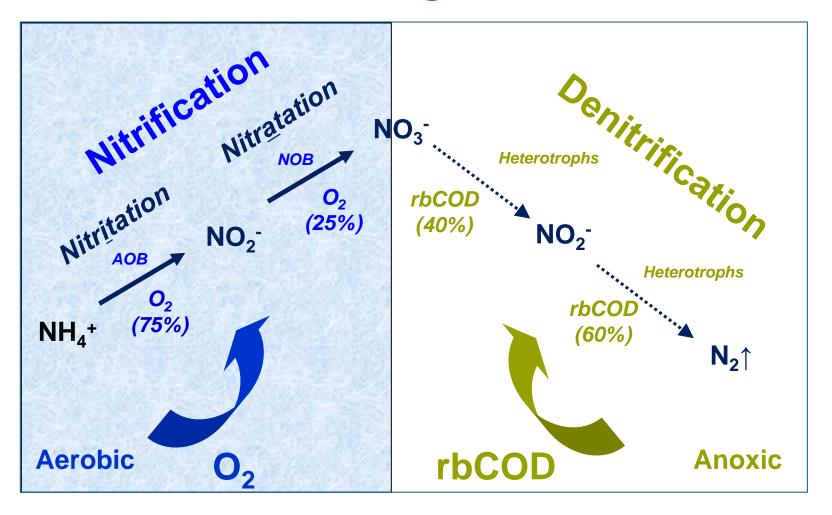
Drivers in Ohio


From http://water.usgs.gov/nasqan/images/nasqan_ms_web.jpg

- Harmful algal bloom (HAB) in lakes → TP
- **Gulf of Mexico hypoxia from Mississippi** Atchafalaya River Basin (MARB) → TN

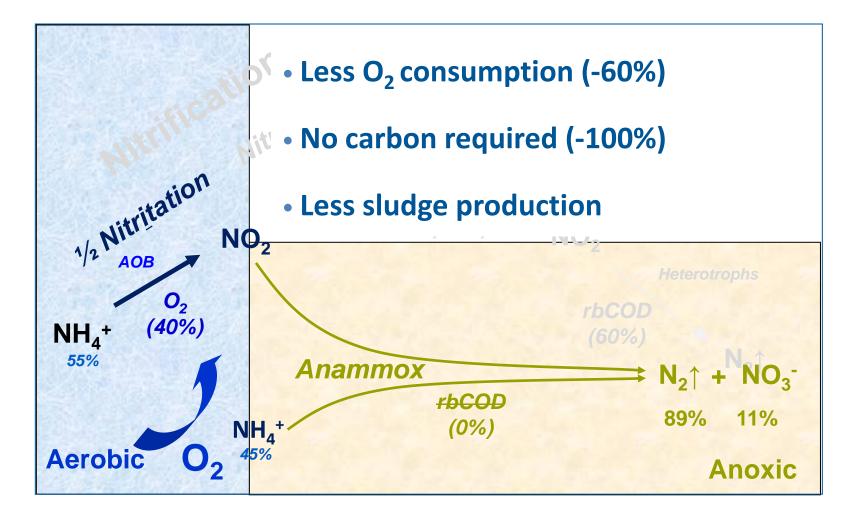


Bottom-water Dissolved Oxygen - 2014

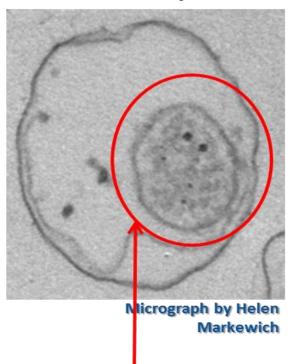


Distribution of bottom-water dissolved oxygen July 27-August 1 (west of the Mississippi River delta), 2014. Black line indicates dissolved oxygen level of 2 mg/L.

DEAMMONIFICATION


Conventional Nitrogen Removal

Consumes a lot of oxygen and chemicals. Energy intensive.


Deammonification

Anammox Overview

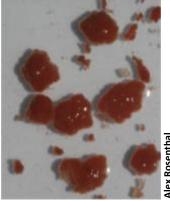
Order: Planctomycetales⁽²⁾

Unique internal cell organelle: the anammoxosome

- Extremely slow cell growth rate (~10 day doubling time)
 - Biomass retention is critical
 - Optimal temperature = 25 35 °C
- Various control complexity
 - Timed intermittent aeration
 - DO and pH feedback control
 - NO₂-, NO₃-, and NH₃ feedback control
 - Control competing NOBs

Side Stream Treatment with Anammox

Primary Sludge


Waste Activated Sludge

Anaerobic Digestion

Dewatering

 $NH_3-N = 500-2000 \text{ mg/L}$

 $NH_3-N = 50-200 \text{ mg/L}$, $NO_X-N = 5-20 \text{ mg/L}$

Anammox grows well in digestate liquors Startup range: 1-2 months
→ >6 months (w/seed) (w/o seed)

Digestate Sidestream Application

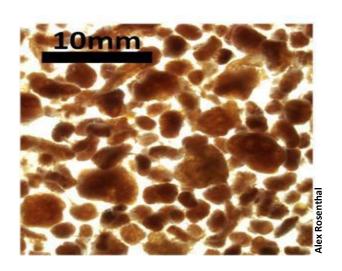
Total WWTP Energy Use

60 % Used For Aeration

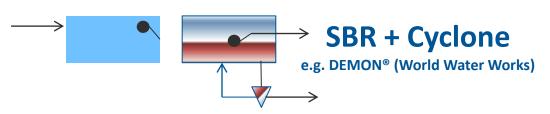
50 % For Nitrification

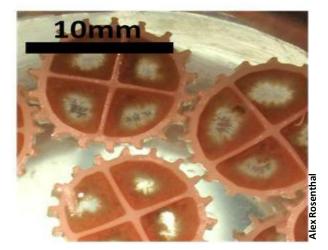
10-20 % N Load **From Sidestream**

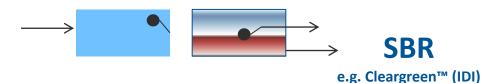
> 60 % More **Efficient Than** Conventional


Total WWTP Energy savings of 2-4 %

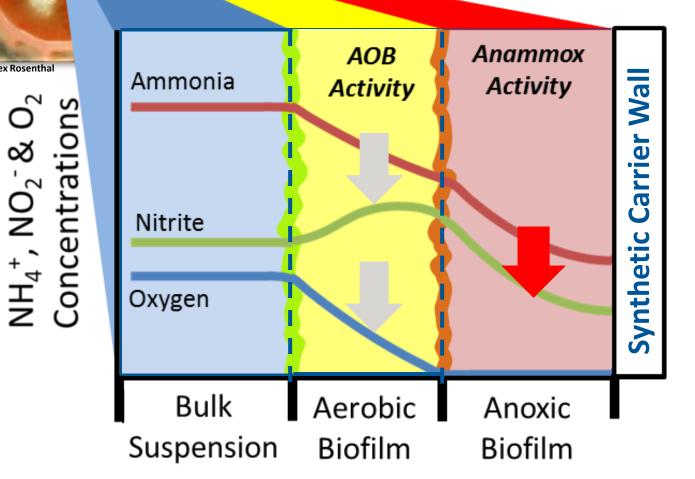
Biggest Drivers


- 1. Reduce or eliminate carbon supplementation
- 2. N removal in a small footprint




Reactor Types and Technologies

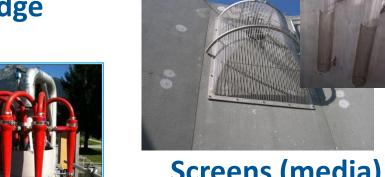
Media (MBBR or IFAS)


e.g. ANITA™ Mox (Veolia/AnoxKaldnes)

Alex Rosenthal

Anammox: Anoxic process

Design Components



Carrier media

Physical layout

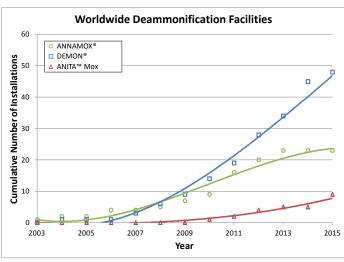
Anammox sludge (granule startup)

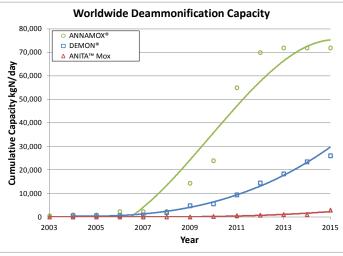
Screens (media)

Mixing

Aeration Blowers

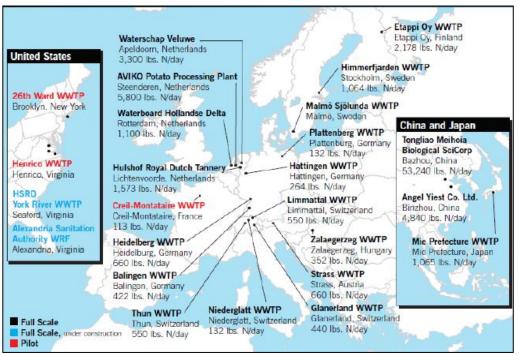
Coarse bubble diffusers


Cyclone (Demon®)



Decanter (SBR)

Gaining Traction in North America


New Since 2012

Full-Scale

- Greelev. CO
- Guelph, Ontario, CAN
- **Durham. NC**
- **■** Washington, DC
- **Pierce County, WA**

Pilot

- John E. Egan WRP, Chicago, IL
- Robert W. Hite WRF, Denver, CO
- Joint WPCP, Los Angeles County, CA
- Mill Creek WWTP, Cincinnati, OH
- St. Joseph, MO
- Tomahawk WWTF, Johnson County, KS

Source: T. Farina (2012) An Overview of Sidestream Treatment Alternatives Used to Increase Nutrient Removal, OWEA Annual Conference, Aurora, Ohio

CASE STUDIES

- Cincinnati, OH
- St. Joseph, MO
- Washington, DC

Background

MSDGC

- 230,000 residential and commercial users
- 250 industrial users

Mill Creek WWTP

- Up to 430 mgd primary and disinfection
- Up to 240 mgd activated sludge treatment
- Fluid bed incineration: ~100 dry ton per day

Major Industrial Waste: Landfill Leachate

Landfill Leachates		Flow	TCOD	SCOD	NH ₄ -N	рН	Ca	Temp
		MGD	(mg/L)	(mg/L)	(mg/L)		(mg/L)	(°C)
Regular Strength	Avg.	0.1	4,226	1,988	650	8.5	100	25
	Min		1,290	1,110	140	7.6	85	15
	Max		20,600	4,900	1,460	10.6	140	29
High Strength	Avg.	0.2	65,000	60,000	1,932	6.9	3,200	30
	Min		49,000	35,500	1,434	5.4	2,667	28
	Max		105,000	95,000	3,500	7.1	3,570	38

Leachate Treatment Challenges

Industrial Load

- Highly variable
- High strength
- Very odorous
- Discharge to big interceptor

POTW

- Process instability
- Consumes energy
- Odor control
- CSO events
- New WWTP?

Pilot Project Objectives

Treatability

How feasible is deammonification for leachate treatment?

Inhibition

Does leachate pose inhibition risks to the deammonification process?

Stability/Reliability

How stable/reliable is the deammonification process for this application?

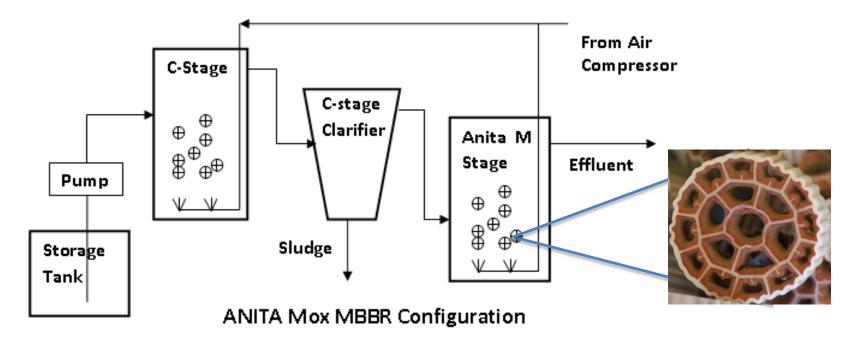
Processes Piloted

Regular leachate:

- ANITA[™] Mox
 - Moving Bed Biofilm Reactor (MBBR)
 - Integrated Fixed Film Activated Sludge (IFAS)
- Nitrite shunt

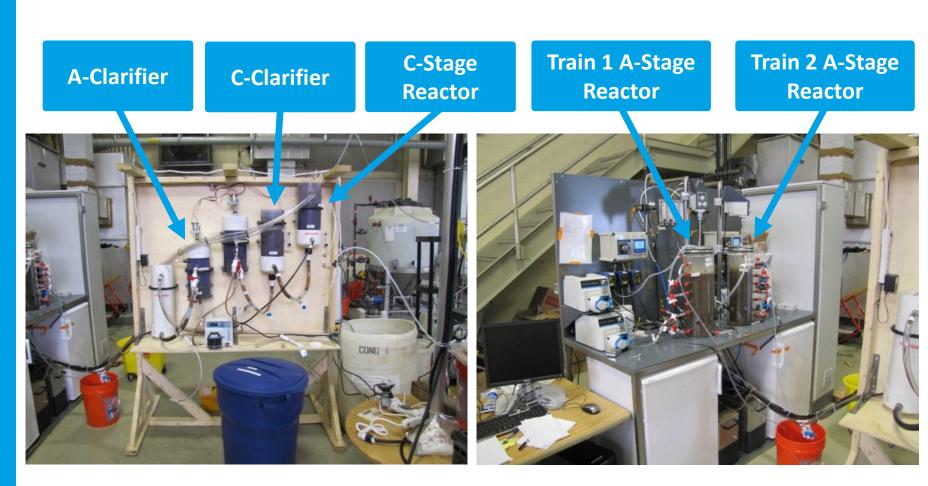
High strength leachate:

- Anaerobic Member Bioreactor (AnMBR)
- Upflow anaerobic sludge blanket (UASB) + ANITA™ Mox

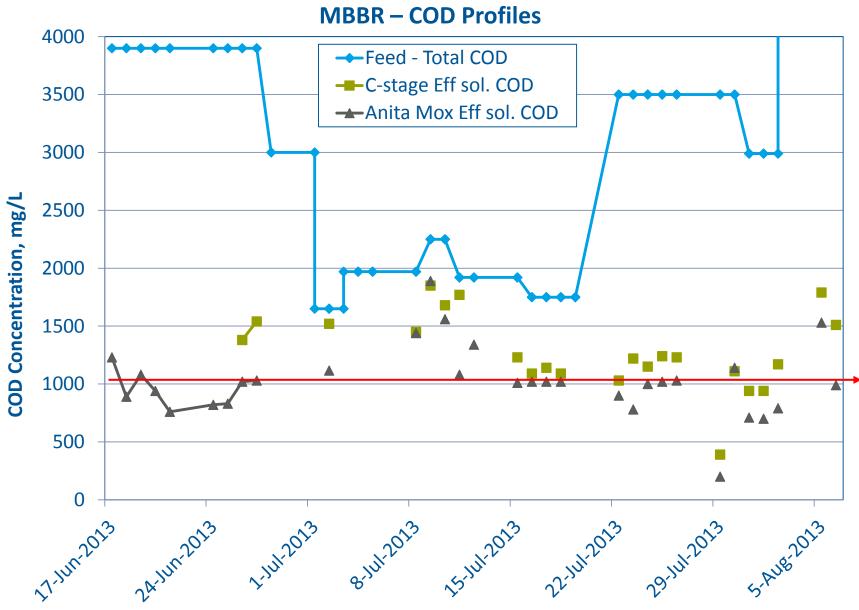

Pilot MBBR Flow Schematic

C-stage

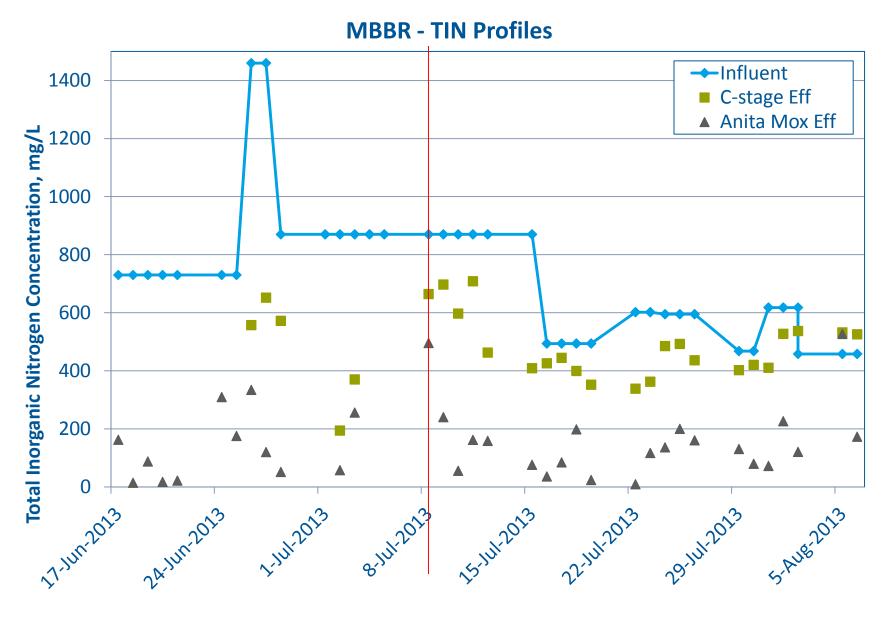
- Heterotrophic bacteria
- Carbon removal


A-stage (ANITA™ Mox)

- AOB & Anammox
- Nitrogen removal



Pilot Plant Layout



MBBR - Ammonia Profiles →Influent 1400 C-stage Eff ▲ Anita Mox Eff 1200 1000 NH₄-N Concentration, mg/L 800 600 400 200

A-stage removed majority of ammonia instead of C-stage after ~July 9th

ANITA™ Mox Design Criteria

	CINCI	NNATI	DENVER*	LA**	
Feed	Regular	Leachate	Centrate	Centrate	
Media	Originated from Denver				
	REMOVAL (%)	SRR*** (g/m²/day)	SRR (g/m²/day)	SRR (g/m²/day)	
COD	80	15	N/A	N/A	
TIN	82	1.1	2.5	2	

^{*}Hollowed et al (2013) Evaluation of the Anita-Mox Moving Bed Biofilm Reactor Process for Sidestream Deammonification at the Robert W. Hite Treatment Facility, Denver Colorado, WEF Nutrient Removal & Removery Conference, Vancouver, Canada.

^{***}Surface Removal Rate

^{**}Nicholas Smal, Michael Liu, Robert Morton (2014) Pilot-scale Evaluation of Anita Mox for Centrate Nitrogen Removal at the JWPC, California Water Environment Association Annual Conference, Santa Clara, California.

MSDGC Pilot Conclusions

Treatability

- ANITA™ Mox capable of treating regular landfill leachate
- Seeded media from centrate was able to adapt to leachate

Inhibition

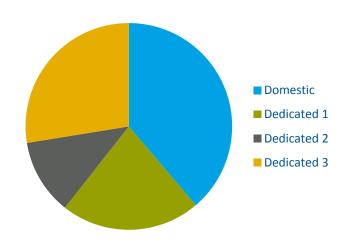
Apparent inhibition from leachate attributed to a lower surface removal rate (SRR)

Stability/Reliability

Biofilm medium is very reliable and robust to respond to toxic conditions (i.e. nitrite build up)

ST. JOSEPH, MISSOURI

Background


- 77,000 residents
- 30 industrial users

Water Protection Facility

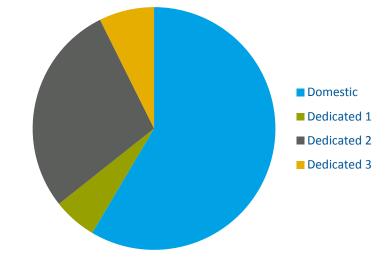
- 20-mgd annual average
- New permit limits for ammonia
- Two SIUs = 15% influent flow and 50% TN load

Goals and Objectives

8000 ppd Influent NH₃-N - 4200 ppd Permitted 3800 ppd NH₃-N to remove

Technical Assistance Program

- Public/private partnership
 - City
 - Industrial users
 - Consultants
- Innovative approaches to allow increased industrial production as well as meet new NPDES permit limits
- Pilot new nitrogen removal technologies


New approaches to reduce costs to both City rate payers and industrial users

Concept for Future Nitrogen Removal

- **Deammonification conversion**
 - Two unused secondary digesters
 - Existing mixing and heating
 - Potential alkalinity addition
- Re-route SIUs from clarifier

3800 ppd Removal Required – 3200 ppd Deammonification by SIU 600 ppd Nitrification by POTW

- Feasible compliance scenario
- •Pilot studies to evaluate treatment technologies

Nitrogen Removal Technology Evaluations

Preliminary Alternatives Screening

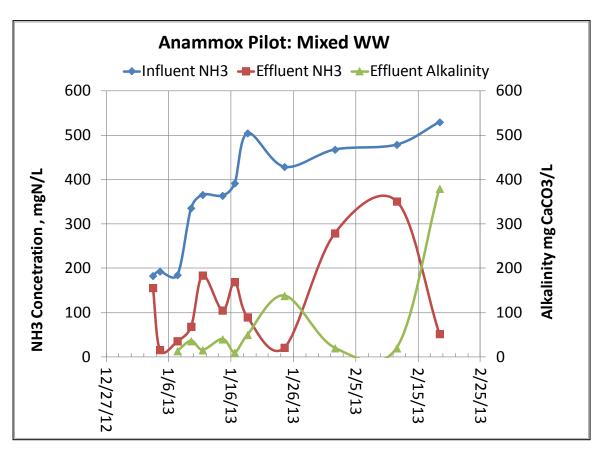
- Integrated Fixed Film Activated Sludge (IFAS)
- ANITA™ Mox Moving Bed Biofilm Reactor (MBBR)
- DEMON® Sequencing Batch Reactor (SBR)
- Granular Activated Sludge
- 2-stage Membrane Bioreactor (MBR)
- Nitrite Shunt

Bench-Scale Pilot Testing

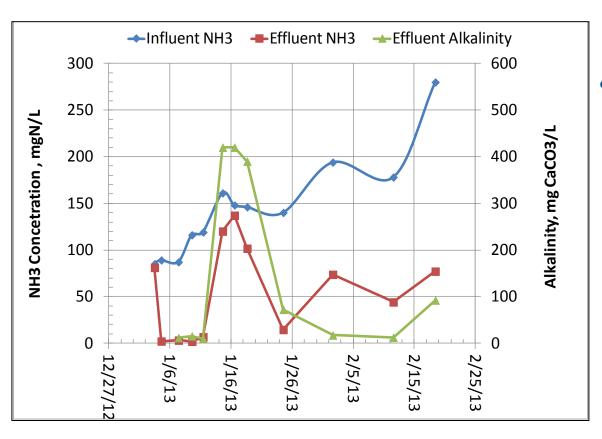
- ANITA™ Mox MBBR (by B&V)
- ANITA™ Mox MBBR (by AnoxKaldnes)

Demonstration-Scale Pilot Testing

- DEMON® SBR(at WPF by World Water Works)
- DEMON® SBR (at SIU by World Water Works)


Initial Bench-Scale Piloting

Influent Conditions	Reactor Conditions
Reactor #1: 45% SIU#1, 45% SIU#2, 10% WPF digester sludge supernatant	0.25 m ² pre-colonized media from NYC pilot
Reactor #2: SIU#1 – Slaughter house wastewater	1 to 2 day hydraulic retention
Reactor #3: SIU#2- tannery wastewater	Single-stage intermittent aeration
	30 to 35 °C

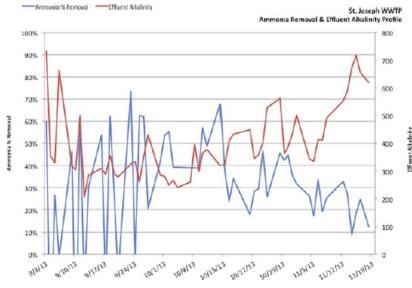

Anammox MBBR Pilot - Mixed Influent

- At 30°C (±0.8) average temperature:
 - Average ammonia removal efficiency = 70% (± 23)
 - Average removal rate = $1.5 \text{ g/m}^2\text{-d} (\pm 0.7)$

Anammox MBBR pilot - SIU #1 Influent

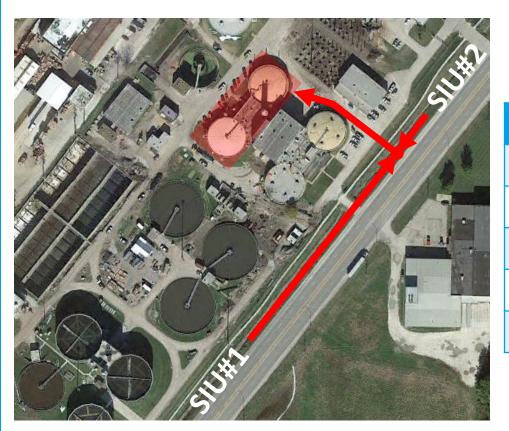
- At 34 °C (± 1.7) average temperature:
 - Average ammonia removal efficiency = 86% (±0.14)
 - Average removal rate $= 0.71g/m^2 - d (\pm 0.24)$

Anammox MBBR pilot - SIU #2 Influent



- At 33 °C (± 0.7) average temperature:
 - Average ammonia removal efficiency = 30% (±12)
 - Average removal rate $= 1.1 \text{ g/m}^2 - \text{d } (\pm 0.22)$

DEMON® Full Scale Demonstration


- WPF and SIU locations
- Average ammonia removal = 70%

Variability of wastewater characteristics hindered performance

Conceptual Design


Project Estimate = \$20-29 million

- Yard piping
- Equalization basin
- Influent pump station
- Digester conversion
- Blower modifications

WASHINGTON, DC

Deammonification for DC Water

Blue Plains AWTP Filtrate Treatment Facility

Design Features

- BFP filtrate from thermal hydrolysis \rightarrow anaerobic digestion
- DEMON® process, largest of its kind, first multi-tank system
- Treat 1.1 mgd with NH₃-N up to 3,000 mg/L
- Remove ~27,340 lb-N/day

Schedule

- 2013 design completed
- March 2014 construction NTP
- Dec 2016 substantial completion

Probable Construction Cost

• \$ 47-53 Million

CONCLUSIONS

Is Deammonification Right for You?

Considerations:

- Effluent nitrogen limits
- Wastestream characteristics C:N ratio
- Anaerobic digestion
- Space constraints
- Potential toxicity or inhibition pilot testing
- Temperature
- Chemical and energy costs
- Existing facilities and operations

Deammonification is generally lowest cost alternative on \$/lb N removed basis

For Further Details:

- T. Lu, B. George, D. Metz, D. Linn, A. Bahar, H. Zhao (2014) How Does Deammonification Technology Work in Industrial Waste: A Case Study of Using Anita Mox Process to Treat Landfill Leachate, *WEFTEC Proceedings*, New Orleans, Louisiana.
- G. Hunter, R. Jezek, A. Clements, D. Gilpin, A. Nifong, C. Johnson, M. Ekenberg (2014) Communication and Technology: Winning Formula for Treatment of Industrial Waste, *WEFTEC Proceedings*, New Orleans, Louisiana.
- P. Thomson, B. Blair, S. Kharkar, N. Passarelli, C. deBarbadillo, R. DerMinassian, B. Woods, J. Doane, J. Tattersall (2014)
 Deammonification Treatment of Filtrate Sidestream at Blue Plains AWTP: Project Challenges and Updates, WEFTEC Proceedings, New Orleans, Louisiana.

Building a world of difference.

Together

Jim Fitzpatrick | Senior Process Engineer

913.458.3695 | FitzpatrickJD@bv.com

Ting Lu | Deputy Integrated Planning Lead

513.936.5109 | LuT@bv.com

Sid Sengupta | Client Services Director

513.936.5121 | SenguptaS@bv.com

Dianne Sumego | Client Services Director

330.607.5619 | SumegoD@bv.com