AN INTEGRATED WATERSHED WET WEATHER APPROACH THAT VISUALIZES AND QUANTIFIES THE BENEFITS OF GREEN INFRASTRUCTURE

JIM SCHLAMAN, BLACK & VEATCH
MEL MENG, BLACK & VEATCH
AGENDA

• Overview of Integrated Planning
• Discussion of Integrated Planning Tools
 - Green Infrastructure Locator
 - Integrated 2D Collection System
 - Modeling and BMP Impact Tool
• Bring it All Together – Omaha Example
INTEGRATED WET WEATHER PLANNING ENCOMPASSES MANY COMPONENTS

- Optimized Green and Gray Infrastructure
- Integrated Stormwater/ Flooding CSO/SSO Plans
- Water Quality Enhancements
 - Contaminants of Concern
 - Source Tracking
- Real Time Control and Smart Integrated Infrastructure
- Integrated Financial Capabilities Analysis
- Asset Management and Criticality Assessments
TRADITIONAL SOLUTIONS TYPICALLY DO NOT PROVIDE A WET WEATHER SOURCE CONTROL

• Retention and treatment of in-system flows
• Volume of runoff into sewers is the same
• Sewer system storage and treatment capacity is increased
• Less focus on source control
GREEN SOLUTIONS ARE DESIGNED TO MIMIC NATURAL SYSTEMS

- Bioretention basins
- Rain gardens
- Bioswales
- Stormwater wetlands
- Green streets
- Stormwater tree trenches
- Curb extensions
- Downspout disconnection
- Porous pavement
- Green roofs
- Rain barrels
- Rainwater catchment
POTENTIAL BENEFITS OF GREEN SOLUTIONS

- CSO/SSO source control
- Water Quality Improvements
- Sewer Back-Up Relief
- Recreational amenities
- Reclaimed park land
- Drinking water supply protection
- Energy demand reduction
- Green collar job creation
- Natural habitat protection
- Increased property values
- Public support for improvement projects
HOW CAN GREEN INFRASTRUCTURE BE SITED?
THE GREEN INFRASTRUCTURE LOCATOR IS A GEOGRAPHIC INFORMATION SYSTEM (GIS) MODEL THAT IDENTIFIES AND RANKS PARCELS FOR BMP INSTALLATION

Quickly Finds Opportunities!
GREEN INFRASTRUCTURE LOCATOR – HIGH VALUE GREEN SOLUTION OPPORTUNITIES WERE IDENTIFIED
BASIN WIDE GREEN SOLUTION PLAN CAN BE QUICKLY FORMULATED FROM BMP LOCATOR

- Reclaim existing amenities
- Green solutions as part of the conveyance sewer improvements
- BMP plan to meet stormwater regulations
HOW CAN YOU QUANTIFY THE BENEFIT GREEN INFRASTRUCTURE?
Simulation models are critical for CSO/Stormwater planning to develop effective control measures.
SYSTEM MODELING & CSO/STORMWATER CONTROLS CAN INCLUDE ALL COMPONENTS OF A CONVEYANCE SYSTEM

- Primary Conveyance (1D)
 - Pipes/Sewers
 - Pumping Stations
 - Tunnels

- Secondary Conveyance (2D)
 - Streets
 - Inlets
 - Overland Flow Paths
 - Roof tops, Driveways, etc.

Secondary Conveyance can easily be evaluated using 2D surfaces and elements!
BOTH GREEN & GRAY INFRASTRUCTURE CAN BE OPTIMIZED WITH INTEGRATED MODELING

GREEN INFRASTRUCTURE SOLUTIONS ARE DESIGNED TO MIMIC NATURAL SYSTEMS

Green Infrastructure primarily consists in the Secondary Conveyance system!

TRADITIONAL GRAY SOLUTIONS DO NOT PROVIDE SOURCE CONTROL
2D MODELING CAN INCORPORATE THE SECONDARY CONVEYANCE SYSTEM ELEMENTS INCLUDING GREEN INFRASTRUCTURE
INTEGRATED 2D MODELS HELP TARGET PROBLEM AREAS

Integrated solutions can help address multiple objectives.
BRINGING IT ALL TOGETHER

PAXTON BASIN MODELING - CITY OF OMAHA
THE PAXTON BASIN BY THE NUMBERS

- Drainage Area = 1400 ac
- Proposed Separation Area = 1220 ac
- Primarily serviced via Combined Sewer
- Partial Storm Sewer
- Existing Storage Facilities
 - Lake James Park Detention
 - Fontenelle Park Lagoon
- 1500 Storm Inlets
- Historic Basement Backup & Street Flooding Issues
A successful separation plan for the Paxton Basin must address several competing objectives.
TRADITIONAL STORM SEWER “FULL” SEPARATION APPROACH INCREASES ASSUMPTIONS AND COSTS

- Assumed “full” separation of basin
- Assumed volume reduction to Combined Sewer System
- Design is conservative to meet project objectives
- May not fully utilize existing infrastructure
- Model only included proposed infrastructure
FULL SEWER SEPARATION PLAN REMOVES STORM INFLOWS TO CSS BUT IS EXPENSIVE
A FULLY INTEGRATED MODEL WAS CONSTRUCTED TO OPTIMIZE COSTS AND BENEFITS
INTEGRATED MODELING APPROACH OPTIMIZES AND REDUCES COSTS

- Pipe Reduction = 12,600 feet (57%)
- Construction Cost Savings = $10 million (41% reduction)
- Reduces Street Flooding
- Alleviates Basement Backups
- Provides sufficient inflow reduction to meet CSO objectives
 - Captures 55% of CSO Event
 - 74% of 10-yr Event
INTEGRATED MODEL CAN BE UTILIZED IN ALL PHASES OF PLANNING & DESIGN

- Pipe Design
- Inlet Design
- Street Design
- Detention/Retention Facility Design
- Green Infrastructure Design
- Level of Service Analyses
- Risk or Flooding Analyses

Integrated model ensures changes in design still meet project objectives.
WHY UTILIZE AN INTEGRATED 2D MODEL AS A PLANNING AND DESIGN TOOL?

• Identifies Deficiencies
• Realizes System Impacts
• Optimizes Existing Infrastructure
• Steers Planning & Design
• Reduces Costs

Maximizes the use of existing infrastructure and reduces proposed infrastructure helping to drive down program costs!
AGENDA

• Overview of Integrated Planning
• Discussion of Integrated Planning Tools
 - Green Infrastructure Locator
 - Integrated 2D Collection System Modeling and BMP Impact Tool
• Bring it All Together – Omaha Example
Building a world of difference.®

Together

BLACK & VEATCH

www.bv.com
INTEGRATED 2D MODELING ALLOWS DOWNSTREAM IMPACTS TO BE REALIZED

Integrated model optimizes solutions!
Real-Time Controls Will Help To Optimize the Downstream CSS and Save Money
ESTABLISHING EXISTING CONDITIONS ALLOWS FOR OPTIMIZATION OF THE SYSTEM
THE PAXTON BASIN BY PHOTOGRAPH

Fontenelle Park

Typical Residential Street

Paxton Boulevard
Integrated Basin Models allow optimization of all alternatives and tools!

GREEN INFRASTRUCTURE TO BE INCORPORATED IN THE PAXTON BASIN