Research on Potential Impacts from Hydraulic Fracturing on Drinking Water Resources

Christopher A. Impellitteri
U.S. Environmental Protection Agency
Office of Research and Development

Ohio Water Environment Association Government Affairs Specialty Workshop
March 1, 2012
Purpose of the EPA Study *

In its FY 2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using:

- Best available science
- Independent sources of information
- Transparent, peer-reviewed process
- Consultation with others

*http://www.epa.gov/hfstudy/
Purpose of EPA’s Study

- To assess the potential impacts of hydraulic fracturing on drinking water resources
- To identify the driving factors that affect the severity and frequency of any impacts

This study is not intended to determine or evaluate best management practices.
Research Approaches

- Gather and analyze existing data
- Case studies
- Scenario evaluations
- Laboratory studies
- Toxicological assessments
What are the possible impacts of releases of flowback and produced water on drinking water resources?
Hydraulic Fracturing

Hydraulic fracturing often involves the injection of more than a million gallons of water, chemicals, and sand at high pressure down the well. The depth and length of the well varies depending on the characteristics of the hydrocarbon-bearing formation. The pressurized fluid mixture causes the formation to crack, allowing natural gas or oil to flow up the well.

Water Use in Hydraulic Fracturing Operations

- Water Acquisition - Large volumes of water are transported for the fracturing process.
- Chemical Mixing - Equipment mixes water, chemicals, and sand at the well site.
- Well Injection - The hydraulic fracturing fluid is pumped into the well at high injection rates.
- Flowback and Produced Water - Recovered water (called flowback and produced water) is stored on-site in open pits or storage tanks.
- Wastewater Treatment and Waste Disposal - The wastewater is then transported for treatment and/or disposal.

Aquifer

Hydrocarbon-bearing Formation

Induced Fractures
HF in Ohio

- **Marcellus Shale Horizontal Well Permits**
 - 13 horizontal well permits issued - 7 drilled from 2006-present

- **Utica Shale Horizontal Well Permits**
 - 137 horizontal well permits issued - 35 drilled from 2009-present

Research on WW and DW

• Research Questions
 • How effective are conventional and commercial treatment systems in removing organic and inorganic contaminants of concern in HFWW
 • What are the potential impacts from surface water disposal of treated hydraulic fracturing WW on DW treatment facilities
What is HFWW?

• “Flowback”
 • Injected fracturing fluid returning to the surface after a fracturing event

• “Produced”
 • Water extracted from the formation during gas production

• Storm water runoff?
Volumes of WW

• 56 M bbl/day from on-shore oil and gas production*
 • = 2.353 Bgal. Los Angeles Hyperion Treatment plant treats 340 MGD. Seven days to treat a days’ worth of wastewater (Detroit could treat the volume in 1.5 days)

• Shale Gas well
 • Rough average 500 bbl/day = 21,000 Gal/day
 • Varies greatly depending on location, stimulation methods, geology etc.
 • e.g. Barnett 3-4X “wetter” than Marcellus

Duration of WW production

• Flowback
 • 2-8 MG/well for drilling/fracturing
 • 30-70% flowback*
 • 13.5% Susquehanna River Basin (131 Wells)**
 • Hours to weeks (14-30 days cutoff?)

• Produced
 • Greatly depends on formation
 • Generally less than 1000 gal/MMCF gas over lifetime***

**Hoffman, J. 2010. Susquehanna River Basin Commission
Natural Gas Development at http://www.srbc.net/programs/projreviewmarcellustier3.htm
***ERG Draft Pollutant Research Literature Review
Potential Contaminants

- TDS
- Anions
- Cations/elemental
- Organics
- Radionuclides (NORM)
 - Radium
 - Uranium
 - Thorium
WW Storage

• Lagoons, ponds, tanks
• Storage issues
 • Wildlife
 • Odor
 • Overflow/failure
• Regulations
 • States
 • Liners
 • Construction requirements
WW Treatment

- Direct discharge to surface
- Indirect discharge to surface water
 - Publically owned WW treatment plant (POTW)
 - Conventional WW treatment: Primary settling, aeration basin/activated sludge, secondary settling
 - Commercial Treatment
 - Evaporative/Distillation
- Underground injection
- Reuse
DW Issues

- **Direct contamination**
 - Subsurface migration
 - Faulty well construction

- **Discharge to surface water**
 - POTWs
 - Commercial facilities
 - spills
DW-Bromide

- Bromide + NOM + chlorination = Br disinfection by-products (DBPs)
 - Total Trihalomethanes (THMs)- 80 µg/L
 - Chloroform (aka trichloromethane) - CHCl$_3$
 - Bromodichloromethane - CHClBr$_2$
 - Dibromochloromethane - CHCl$_2$Br
 - Bromoform (aka tribromomethane) – CHBr$_3$
 - High source water bromide concentrations
 - Tend to shift THMs toward Br forms
 - Br is heavier thus 80 µg/L reg is exceeded
• **Marcellus**

 • Bromide ranges from non detect to 1600 mg/L in HFWW (PADEP 26R Forms-Annual Report by Generator)

 • Min: 0.14 mg/L Max: 1990 mg/L Avg.: 410 mg/L Median: 180.5 mg/L
DW-Bromide in SW

• Possible Sources
 • Coal fired power plants
 • Surface/Mountain Top Mining Valley Fill
 • Hydraulic Fracturing
 • Runoff/overflow/spills
 • Treated discharge
 • Commercial Trtmt. Facilities
 • POTWs
DW-Bromide in SW

PWSA Bromide Samples, July 2011
Research-Bromide

• Phase I: THM formation potential from Br containing compounds
 • Typically used as biocides in HF fluids
 • Bronopol: 2-bromo-2-nitro-1,3, propanediol
 • DBNBA: 2,2-dibromo-3-nitrilopropionamide
 • Do these Br compound contribute to Br-DBP formation?
 • Can they potentially form Br-DBPs in storage if shock chlorination is used (odor control in open lagoons)?
 • Can they be “ruled out” relative to naturally occurring bromide?
 • Longevity
• Phase II: THM formation potential from Br in HFWW

 • Proposed methodology
 • Dilute actual HFWW (1%)
 • Account for, by estimation, receiving water dilution factor
 • Use actual PA numbers as a basis
 • Add NOM (e.g. Suwanee River Humic/Fulvic Acid)
 • 0, 1, 5, and 10 mg/L
 • Chlorinate (1-2 mg/L)
 • Chloraminate (1-2 mg/L)
 • Analyze for THMs, Haloacetic acids, and nitrosamines as a function of time
Phase I: Fate and transport of priority contaminants in WW treatment

- Proposed methodology
 - Utilize target contaminant list (Brian’s list-under development)
 - Elements: Ba, Sr, Fe, Mg, Na, Ca
 - Organics: Ethylene glycol, acrylamide, glutaraldehyde, formaldehyde, alkylphenols, benzene/toluene/ethylbenzene/xylenes (BTEX), ethylene glycol monobutyl ether (aka 2-butoxyethanol)
 - Anions: Br, Cl, NO₃, PO₄, SO₄, F
 - Fate/transport studies (benchtop)
 - 10 L temperature controlled stainless steel reactors
Research-Wastewater

Benchtop Reactor
Research-Wastewater

• Phase I: Fate and transport of priority contaminants in WW treatment
 • Proposed methodology
 • Fate/transport studies (benchtop, pilot-scale)
 • Blend HFWW with synthetic WW
 • 0, 1, 5, 10% HFWW
 • Hydraulic Residence Time
 • 6-8 hours
 • 1-2 hours primary settling
 • Concurrent Studies on effects on activated sludge process
 • Monitor biological oxygen demand, chemical oxygen demand, nitrogen (in/out) and phosphorous (in/out)
Phase II: Partitioning of contaminants in residuals

Proposed methodology

- Analyze residuals from bench-top studies and actual HFWW residuals
 - Elemental
 - Bulk digestions, ICP-OES, ICP-MS
 - Elemental chemical speciation
 - Bonding/sorption characteristics (X-ray absorption spectroscopy)
 - Organics
 - Accelerated solvent extraction
 - LC-triple quadrupole mass spectrometry
Current Status

- QAPPs and HASPs in place
- Work has commenced on Br compounds/DBP formation
- Contract support for DBP work in place
- Contract support for WW work is in progress
- ORISE Post-doc expected on-board in March
Immediate Future

- Help to finalize(?) chemical contaminant priority list (end of March)
- Develop/optimize IC/MS procedure for Br analysis in high TDS matrix (end of March)
- Procure HFWW samples for benchtop DBP studies (by end of April)
- Begin setting up benchtop WW systems (May)
Questions?