Overview of New US EPA Ammonia Criteria – Part II

> Options and considerations for achieving NPDES compliance and site-specific criteria development

Tyler Linton Great Lakes Environmental Center, Inc.

Why does this require your attention?

- Criteria numerically lower, so meeting new ammonia permit limits could be difficult and costly for some WWTPs
- Non-treatment compliance flexibilities exist, but some require better understanding or development
- Both state regulators and the regulated community need to review and evaluate the new criteria, associated ramifications, and all the options available to comply with the criteria prior to adoption in state WQS

Ohio Ammonia Criteria vs New National Criteria – at pH 7

Temp	CMC-	WWH-	CMC-	CWH-		WWH-	CWH-
(°C)	ΟΑ	OMZM	OP	OMZM	CCC	OMZA	OMZA
5	38	13	· 24	13	4.4	12.6	2.3
10	38	13	24	13	3.6	12.6 / 2.3	2.2
15	25	13	24	13	2.6	<mark>8.6</mark> / 2.2	2.1
20	17	13	17	13	1.9	5.9 / 2.2	1.5
25	11	13	11	13	1.4	1.6	1.0
30	7.3	13	7.3	9.5	0.99	1.1	0.70

Dec-Feb / Mar-Nov

Ohio Ammonia Criteria vs New National Criteria – at pH 8

Temp (°C)	CMC- OA	WWH- OMZM	CMC- OP	CWH- OMZM	CCC	WWH- OMZA	CWH- OMZA
5	8.8	9.9	5.6	6.2	1.8	3.3	1.4
10	8.8	9.5	5.6	5.9	1.5	2.3/1.4	1.3
15	5.9	9.2	5.6	5.7	1.1	1.6/1.4	1.3
20	3.9	9.1	3.9	5.6	0.78	5.9/1.4	0.90
25	2.6	9.1	2.6	4	0.56	1.0	0.60
30	1.7	6.6	1.7	2.9	0.41	0.70	0.50

Flexibilities authorized under the CWA for WQS implementation

Site-specific criteria derivation,

- Variances,
- Revisions to designated uses,
- Dilution allowances, and
- Compliance schedules

See "Flexibilities" document available at:

http://water.epa.gov/scitech/swguidance/standards/criteria/a qlife/ammonia/

Reminders About National Criteria

- EPA Criteria are based on all acceptable data for a "target set" of species from North America
- EPA Criteria are based upon tests in good quality (clean) laboratory water
- There are methods to modify EPA Criteria to more closely match actual species present and actual water chemistry for any particular site
- These methods usually require the development of additional data related to the site

Site-Specific Criteria (Things to Know)

- Can be higher or lower than the National criteria
- Are usually discharger initiated due to indications (bioassessment or WET) that:
 - current discharge has no effect;
 - receiving water matrix will reduce toxicity;
 - inability to routinely meet permit limits; AND
 - receiving water may not contain sensitive species

Approaches to Modify Criteria

- Water-effect Ratio (WER)
 - Modifies criteria to site-specific water conditions
 - Ammonia WERs are typically 1, therefore no help
 - Recalculation Procedure (RP)
 - Modifies criteria to species occurring at the site
 - May help at certain sites
- Resident Species Procedure
 - Modifies criteria to site water and site species
 - Very expensive
 - Typically does not result in lower criteria

US EPA's 2013 Revision to the RP

- Fixes a previous incongruity in step-wise deletion process – i.e., eliminates the possibility of unintended results at the order, class and phylum levels
- Important for Site-Specific Criteria (SSC) development for ammonia – in cases where probable absence of unionid mussels can be demonstrated

Available as a pdf at:

http://water.epa.gov/scitech/swguidance/standards/criteria/ aqlife/ammonia/upload/Revised-Deletion-Process-for-the-Site-Specific-Recalculation-Procedure-for-Aquatic-Life-Criteria.pdf

Deletion Process of RP

- Goal eliminate from the National dataset those taxa that are <u>not resident (and not expected to be present)</u> in the site waters,
 - while keeping in toxicological surrogates for taxonomically-related resident species for which no data are available
- Systematic stepwise deletion process which deletes species from the National dataset following a set of stringent guidelines
- End result dataset is more <u>representative</u> of the sensitivities of species found at the site – criterion is <u>recalculated</u> from the adjusted faunal dataset

Alternative Criteria for Ammonia-App. N SSC

- Appendix N provides SSC for four "general" scenarios:
 - Unionid Mussels Absent and Oncorhynchus spp. Present
 - Unionid Mussels Absent and Oncorhynchus spp. Absent
 - Unionid Mussels Absent, Fish Early Life Stage (ELS) Protection Necessary
 - Unionid Mussels Absent, Fish Early Life Stage (ELS) Protection Not Necessary
- What's the difference between Appendix N SSC and developing your own? – Appendix N SSC are based on the same faunal list used to derive the National dataset

Starting the Deletion Process

- Obtain a copy of the National dataset
- Group all the species in the National (and site-specific) dataset taxonomically by Phylum, Class, Order, Family, Genus, and Species
- Circle each species in National dataset that "occurs at the site"
- Methodically apply step-wise deletion process with each species in the National dataset

EPA's definition of "occurs at the site"

- Usually present
- Present only seasonally
- Present only intermittently
- Were present in past, are not currently present due to degraded conditions, but are expected to return when conditions improve
- Are present in nearby waterbodies

(Note: Does not include species that were present and cannot exist now due to permanent alterations of the habitat or other conditions not likely to change)

Step-wise Deletion Process

Step 1. Does a species in the Genus occur at the site?

No. Go to step 2

Yes. Within the Genus, are there resident Species that are not in the National dataset?

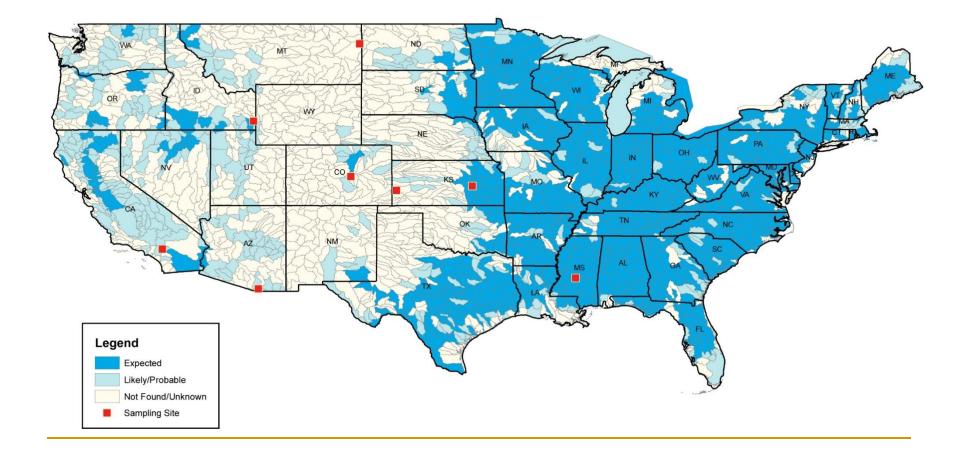
No. Delete the uncircled species (Code N-3).

Yes. Retain the uncircled species (Code Y-3).

Step 2. Does a species in the Family occur at the site?

No. Go to step 3

Yes. Within the Family, are there resident Genera that are not in the National dataset?


No. Delete the uncircled species (Code N-4).

Yes. Retain the uncircled species (Code Y-4).

* Continue by starting at step 1 for each uncircled species until all uncircled species in the National dataset have been considered.

Test Application Case Study Sites

Native Freshwater Mussel Distribution by USGS Watershed

Example – Yellowstone R., MT Faunal List (Showing Mollusks Only)

Order	Family	Genus	Species
UNIONOIDA	UNIONIDAE	LAMPSILIS	LAMPSILIS SILIQUOIDEA
UNIONOIDA	UNIONIDAE	QUADRULA	QUADRULA QUADRULA
BASOMMATOPHORA	ANCYLIDAE	FERRISSIA	
BASOMMATOPHORA	PLANORBIDAE	GYRAULUS	

Highlights:

- Limited number of resident mollusk species
- L. siliquoidea is a "circled" species (tested sp. in National dataset)
- *Q. quadrula* is a "non-endemic" species

Example – Yellowstone R., MT National Chronic Dataset Species Deletion List

Order	Family	Genus	Species	Decision	Reason
Diplostraca	Daphniidae	Daphnia	Daphnia magna	Delete	N-11
Plecotera	Pteronarcyidae	Pteronarcella	Pteronarcella badia	Retain	Y-8
Amphipoda	Hyalellidae	Hyalella	Hyalella azteca	Retain	Y-2
Cypriniformes	Catostomidae	Catostomus	Catostomus commersonii	Retain	Y-2
Cypriniformes	Cyprinidae	Cyprinus	Cyprinus carpio	Retain	Y-2
Cypriniformes	Cyprinidae	Pimephales	Pimephales promelas	Retain	Y-2
Esociformes	Esocidae	Esox	Esox lucius	Retain	Y-2
Perciformes	Centrarchidae	Lepomis	Lepomis cyanellus	Retain	Y-2
Perciformes	Centrarchidae	Lepomis	Lepomis macrochirus	Delete	N-3
Perciformes	Centrarchidae	Micropterus	Micropterus dolomieu	Retain	Y-2
Salmoniformes	Salmonidae	Oncorhynchus	Oncorhynchus clarkii	Retain	Y-6
Siluriformes	Ictaluridae	Ictalurus	Ictalurus punctatus	Retain	Y-2
Unionoida	Unionidae	Lampsilis	Lampsilis fasciola	Delete	N-3
Unionoida	Unionidae	Lampsilis 🦿	Lampsilis siliquoidea :	Retain	Y-2
Unionoida	Unionidae	Villosa	Villosa iris	Retain	Y-6
Veneroida	Pisidiidae	Musculium	Musculium transversum	Delete	N-9
Neotaenioglossa	Hydrobiidae	Fluminicola	Fluminicola sp.	Retain	Y-10

Summary of Chronic SSC Recalculation -Results from Case Study Sites

Site	SSC	SSC Direction	Change in Magnitude				
2013 CCC = 1.9 mg TAN/L at pH 7 and 20° C							
Indian Creek, MS	1.7	Down	Small				
Cedar Creek, KS	1.7	Down	Small				
Yellowstone River, MT (1)	2.2	Up	Small				
Yellowstone River, MT (2)	2.9	Up	Moderate				
App. N "Mussels Absent" Chronic SSC = 6.5 mg TAN/L							
Arkansas River, KS	6.5	Same	None				
Santa Ana River, CA	6.5	Same	None				
Santa Cruz River, AZ	8.2	Up	Moderate				
Fountain Creek, CO	6.2	Down	Small				
Crow Creek, ID	6.5	Same	None				

Bottom Line

 Appendix N provides alternative SSC for general scenarios – but developing your own SSC could still be worthwhile

Hypothetical Scenario	Likelihood	Magnitude ↑ CCC		
No bivalve mollusks	Very Rare	Large		
No unionid mussels	Low	Moderate		
Certain unionid mussels present	High	None to Moderate		

Key operational term in the RP Deletion Process is "Surrogacy" – species absence does not automatically result in deletion

Key Considerations

- Determining presence or probable absence of unionid mussels
 - US EPA Technical Support Document for Conducting Mussel Occurrence Surveys – mostly informational (see EPA 800-R-13-003)
- General lack of robust site-specific faunal Lists:
 - Need specific biological survey/sampling methods/procedures (especially for unionid/bivalve mollusks)
- Taxonomic ID must be made at the <u>Species</u> level
- Occurrence of non-endemic species (not native to sitespecific waterbody of interest)

Parting Advice

- Know the biological community (fauna) at your site and utilize local expertise
- Consider sponsoring additional toxicity tests with resident species, particularly ubiquitous FW unionid mussels and other mollusks (e.g., FW clams and gill-bearing snails)
- Define the probability of the return of a species to a site with permanent physical or other alteration to habitat (e.g., dams, water diversion for irrigation)

Acknowledgments – And Thanks To:

- Co-presenter: Lisa Huff (US EPA)
- Co-workers: Craig Voros and Keith Taulbee
- Following individuals (for the biological assemblage data used):
 - Charles Delos, US EPA, Office of Water, HECD
 - Robert Angelo, US EPA, Region 7
 - Marie Lewis of Golder Associates, Inc.

