

Overview of Haarslev's Approach to THP

Josh Mah 2017 Biosolids Workshop – Ohio Water Environment Association

Master Your Process

INTRODUCING HAARSLEV INDUSTRIES

- Global market leader in rendering
- Headquartered in Denmark
- Founded in 1973
- ~1200 Employees
- Revenue just shy of \$300M (in USD) in 2016
- 25 offices serving 120 countries (US HQ Kansas City, MO)
- Factories in Denmark, Germany, China, Turkey, Peru, Brazil, US
- 17 service centers globally

HAARSLEV INDUSTRIES

- Cooking tough industrial materials since 1973
- Atlas-Stord: Batch thermal hydrolysis for ~60 years
- Continuous hydrolysis of feathers and hair: Patented in 1986
- Complete line of animal carcass handling equipment
- Fish factories in Artic/Antarctic ship hulls: 2
- Main products of the Environmental Divisio
 - Continuous Thermal Hydrolysis System
 - Sludge Belt Dryers and Disc Dryers
 - Waste Food Depacker

SOME QUESTIONS ABOUT THP?

- How hard is it to operate?
- How complicated or complex is the THP unit?
- How big is the THP system?
- How many moving parts need to be maintained?
- What do you want to get out of THP?
- How does continuous THP work?
- What are the benefits of continuous THP?

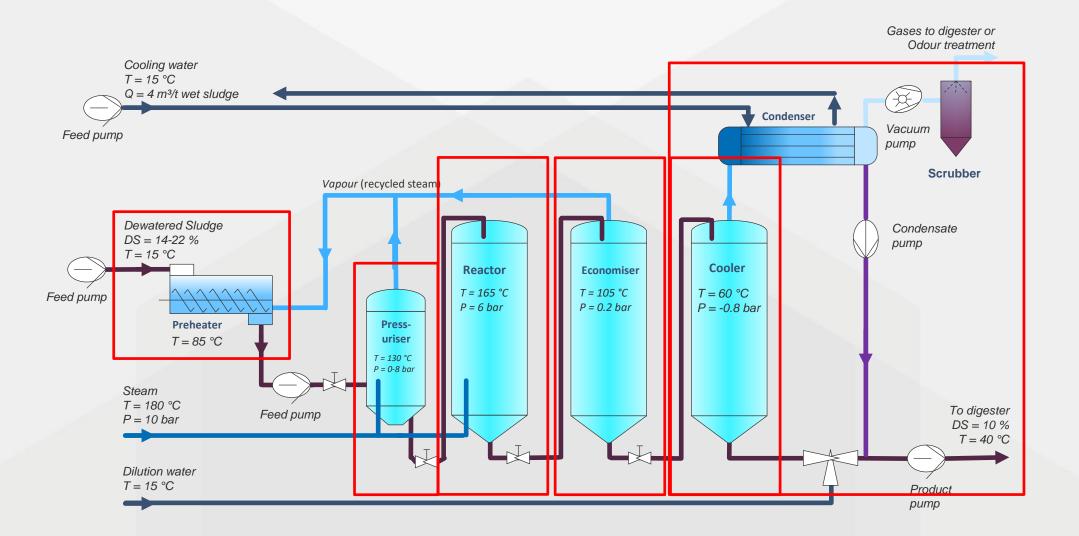
HAARSLEV'S CONTINUOUS HYDROLYSIS SYSTEM - THP = Cooking sludge = Not magic!

- Target 160C for 30 minutes
- Potential vendor differentiators:
 - Quality of thermally hydrolyzed sludge
 - Quality of mechanical components
 - Thermal and electrical efficiency
 - Footprint
 - Capital Cost and Operating Cost
 - Simplicity (Operations and Maintenance)

HAARSLEV'S CONTINUOUS HYDROLYSIS SYSTEM - "Continuous" System:

- Preheater is fed continuously from pre-dewatering (typically a cake bin)
- The Pressurizer feeds 1/40th of main reactor volume every ~90 seconds
 - Think of this like a piston pump
- After sludge leaves the pressurizer, remainder of process operates with continuous flow

KEY ASPECTS OF OUR SLUDGE COOKING PROCESS Significantly different way of heating the sludge


- - No indirect heat exchangers (i.e. tube-in-tube)
 - Direct steam injection (8 bar required, 10-12 bar supply typically)
 - Steam is injected into small (50 gallon) batches of sludge every 90 seconds
 - Steam is used to push the liquified sludge into the main reactor vesse
 - Very few pumps, motors or moving parts
 - High turndown ratio and relatively smooth steam demand
 - Permits feed TS to at least 22%, which increases throughput and reduces steam consumption on a dry solids basis

KEY ASPECTS OF OUR SLUDGE COOKING - Completely different way of cooling the sludge

- - No indirect heat exchangers (e.g. tube-in-tube)
 - Direct evaporation with an indirect condenser
 - Might sound complicated and confusing, but it is as simple as it gets
 - Basically, "non-contact" cooling
 - Moving parts = some valves, discharge pump, vacuum pump, cooling supply pump
 - Condenser is extremely compact relative to other solutions
 - Permits up to 22% TS cake feed
- Sludge cooler may not be necessary with "WAS-only" THP configurations

HAARSLEV'S PREHEATER

- Triple purpose
 - Dispose of "used" steam
 - Recover thermal energy from used steam
 - Reduce viscosity of cake fed to pressurizer
- Mechanically agitated
 - Reduces backpressure on economizer, which improves thermal efficiency
 - Permits up to 22% TS cake feed
 - Not a pressure vessel
 - Operates under very slight vacuum to contain odors

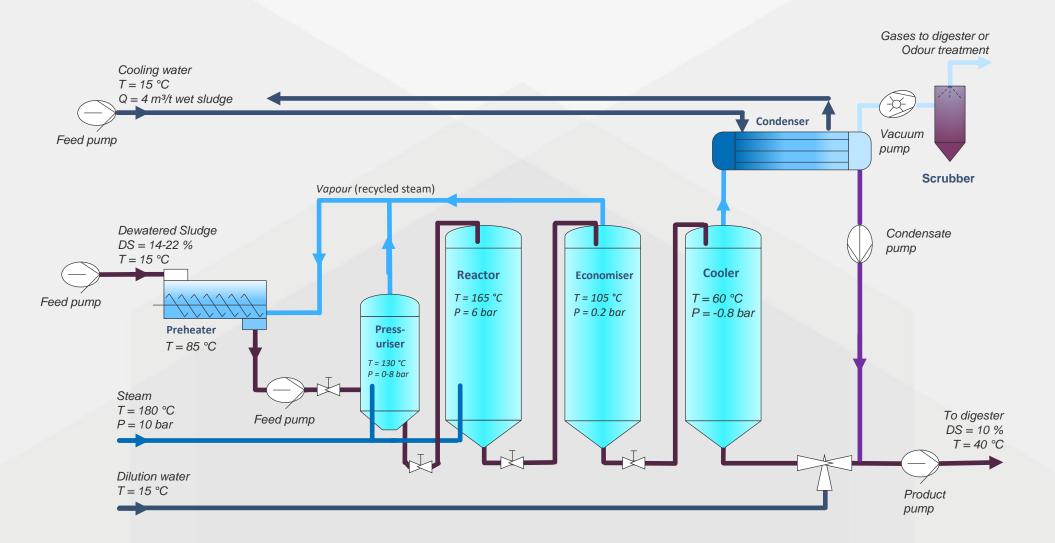
HAARSLEV'S PRESSURIZER

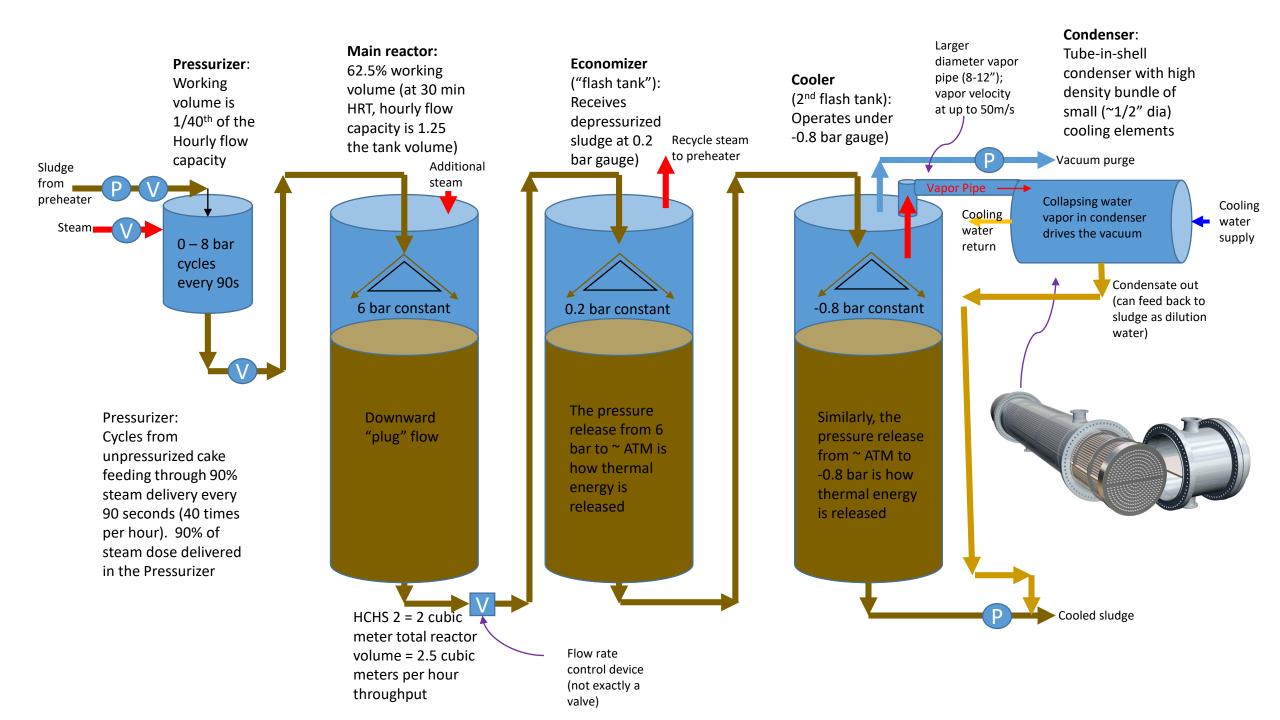
- A feed "pump" to the main reactor using steam as the piston
- Small 12 bar pressure vessel (~200 liters)
- 90 second operating cycle
- Cake fed by PC pump at atmospheric pressure (steam off)
- Feed valve closed, steam valve opened
- Heating / pressurizing for ~45 seconds to 8 bar (~90% total steam dose)
- Valve to main reactor opens, flow to 6 bar by differential pressure
- Steam and discharge valve close, cycle repeats
- Well-proven system in rendering

HAARSLEV'S MAIN REACTOR

- Feed to top of reactor vessel from pressurizer
- Sludge is liquified at this point
- Downward "plug flow"
- Typical 30 minute retention time (2-12 cubic meters)
- Additional steam fed into headspace to maintain temperature (~10%)
- Discharge regulated by nozzle and automated valve
- No mechanical agitator in the pressure reactor
- No radioactive level sensors

HAARSLEV'S ECOMOMIZER


- Receives depressurized sludge from main reactor vessel
- Target pressure of 0.2 bar gauge (~105C)
- Flashed steam returned to preheater
- Vessel is typically 1/2 the volume of main reactor
- Not necessarily a pressure vessel



HAARSLEV'S SLUDGE COOLER

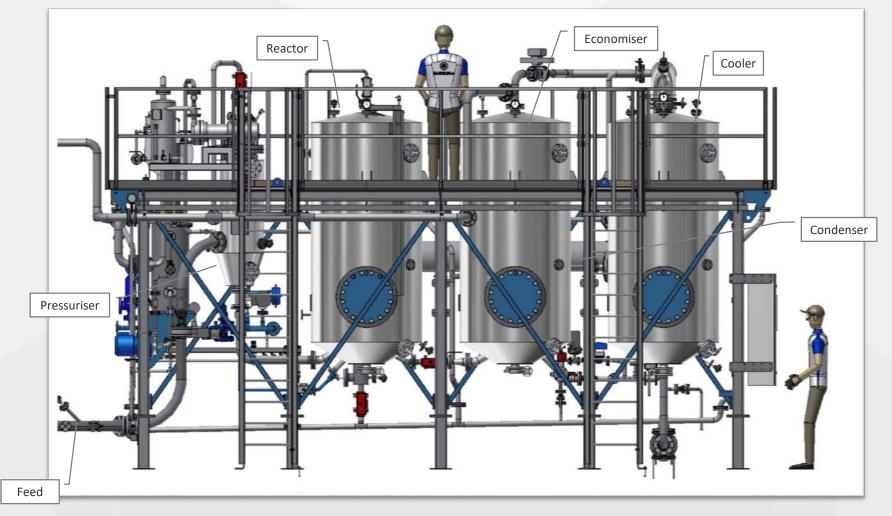
- Conceptually: reverse action of a steam boiler
- Two parts:
 - Cooling vessel another tank (not a pressure vessel)
 - A tube-in-shell condenser
 - Headspace of cooling vessel connected to condenser by large diameter pipe
- Steam is condensed on the inside wall of the condenser
- As volume is collapsed from vapor to liquid, vacuum is created
- "Steam vapor" in hot sludge is evaporated under vacuum
- Thermal energy is extracted from the sludge to the condenser
- Result is non-contact cooling of sludge in one tank by separate condenser

Reference – WWTP Grevesmühlen, Germany

Application:

Client:	Zweckverband Grevesmühlen	
Location:	WWTP Grevesmühlen,	
	Deutschland	
Size:	HCHS 2	
Product:	Secondary and digested sludge	
Steam production:	exhaust heat of CHP	
Throughput:	2 t/h (wet)	
	8 – 10 t _{DS} /d	
Dry Solids:	Dewatering 1: 15-20%	
	Dewatering 2: 33%	
Spec. steam cons.:	190 kg _{Steam} /m³	
Spec. elec. cons.	5 kWh/t _{wet sludge}	
Operation time:	24 h/d, fully automatic	
Commissioning:	2014	

Reference – WWTP Wola Dalsza, Łancut, Poland



Application:

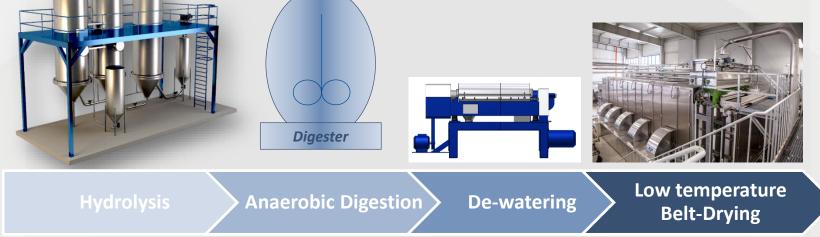
Client:	WWTP Wola Dalsza		
Location:	Łancut, Poland		
Size:	HCHS 2		
Product:	Primary and		
	secondary sludge		
Steam production:	burning of biogas		
Throughput:	1.1 t/h (wet)		
	$4.2 - 5.3 t_{DS}/d$		
Dry Solids:	Dewatering 1: 16 - 20%		
	Dewatering 2: 31%		
Spec. steam cons.:	170 kg _{Steam} /m ³		
Spec. elec. cons.	4 kWh/t _{wet sludge}		
Operation time:	24 h/d, fully automatic		
Commissioning:	2014		

Reference – WWTP Wola Dalsza, Łancut, Poland

VALUE OF A CONTINUOUS PROCESS

- Continuous process flow results in optimized vessel sizes and energy recovery
 - Lower peak flowrates -> smaller vessel sizes
 - Lower capital cost
 - Reduced footprint
 - Continuous steam consumption at all capacities
 - Indirect evaporative cooler is a substantially smaller heat exchanger

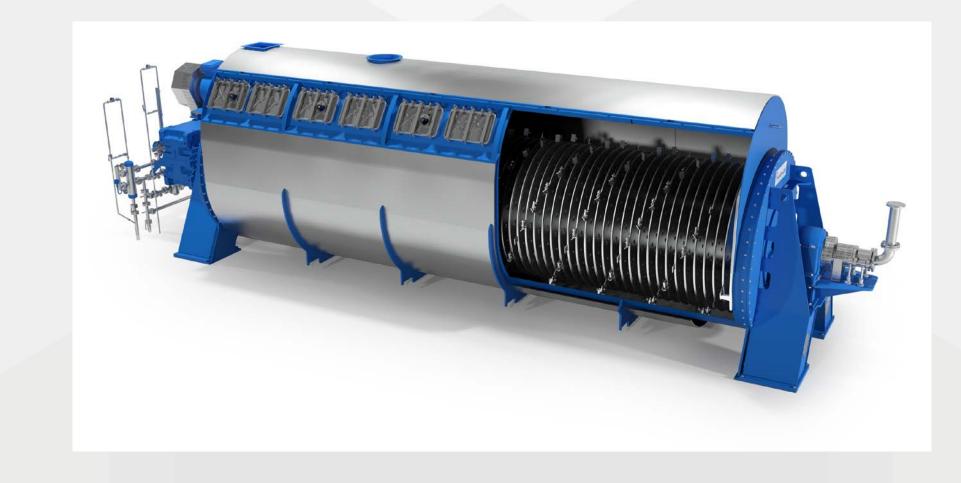
VALUE OF HIGHER DRY SOLIDS CONTENT


- Higher %TS feed results in higher dry solids throughput
 - Flexible in dry solid content with a range of 14 22% DS
 - Operation at higher solid content \rightarrow improved steam economy
- Effect of increasing DS from 16.5% to 22 %
 - 33 % increased capacity of the same installation
 - 28 % reduced steam consumption

Ξ.				
1	16.5 % DS		% DS	22 % DS
	Flow to HCHS (t/h)	9,9		6,9
	Steam consumption (t/h)	1,6		1,1
	Steam consumption kg/t DS	978		705

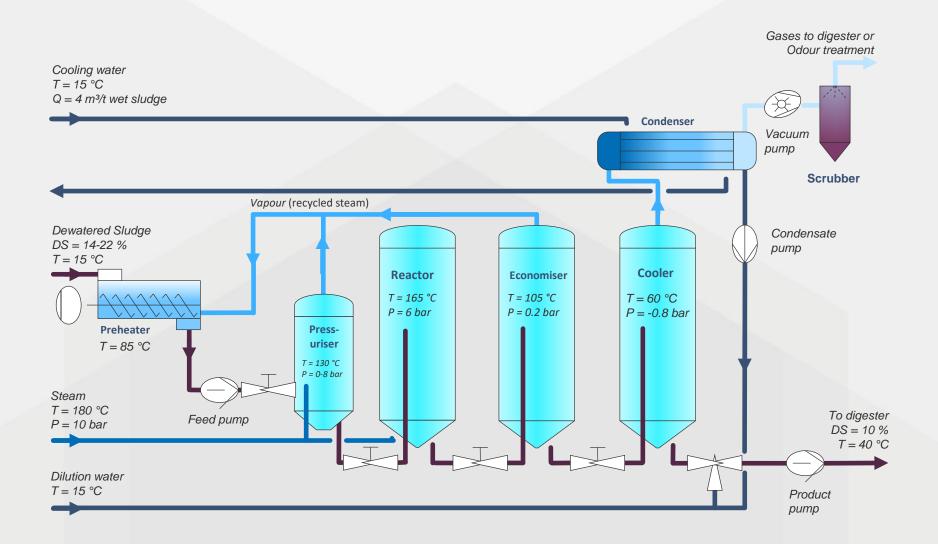
COMBINING THP WITH THERMAL DRYING

- Reduced anaerobic digester volume from THP
- Reduced water evaporation load from better dewatering = smaller dryer
- Use of primary sludge for cooling and dilution of hot hydrolysed secondary sludge can eliminate the cooling requirement
- Alleviates the need to rely completely on the AD for Class A



HAARSLEV'S LOW TEMPERATURE BELT DF

HAARSLEV'S DISC DRYER



THANK YOU FOR YOUR ATTENTION!

- Josh Mah Process Engineer / Technical Sales Joshua.Mah@Haarslev.com
- Keith Hamilton Director of Sales and Marketing, Environmental Division Keith.Hamilton@Haarslev.com
- Haarslev, Inc. (USA) 9700 NW Conant Av Kansas City, MO 64153
- Haarslev.com

