Belt Press Optimization

OWEA

Biosolids Specialty Workshop December 6, 2012

Dan Fronhofer, P.E. BDP Industries

1

Agenda

- Belt Press Overview
- Optimization Parameters
- Focus on Solids Capture
- Why Does it Matter?
- Ways to Improve Solids Capture
- Specifics to Belt Press Technology

Belt Press Overview

Three primary zones:

- Gravity: A cake begins to form
- Wedge: Formed cake is sandwiched between two filter cloths and low squeeze pressure applied.
- Pressure: High pressure and shear applied by serpentine path of two belts around a series of rolls.

Belt Press Schematic

Image source: www.ashbrookcorp.com

Gravity Zone Design

- Cake Formation
 - Initially no cake when the feed slurry is placed on the filter cloth.
 - As slurry flows through filter cloth, solids deposit on surface
 - Resistance to filtrate flow increases with time exponentially.
 - Increasing the belt speed improves the thickening by spreading the cake over more area, producing a thinner cake, and significantly reducing flow resistance.
 - Plows: Enhance filtrate flow by dislodging deposited solids, provide compression by kneading
 - Example: 300gpm of Feed at 2% 3,000 lb/hr dry

Calculation: Filtrate Flow

- 300gpm * 0.02 = 6gpm (of *solids*)
- Assume 5.5% solids by end of gravity deck
- 6gpm/0.055 = 109gpm
- Or -- 6/109 = 5.5%
- 300gpm 109gpm = **191gpm thru gravity belt**

Calculation continued...

- Remember 191gpm thru gravity belt
- Final cake at 20% solids
- 6gpm/0.2 = 30gpm of discharge cake
- Or -- 6/30 = 20%
- 109gpm 30gpm = 79gpm from press
- Gravity Section is the Key to Capacity

Wedge Section Design

- Formed cake is encapsulated between belts.
- Consolidates loosely packed solid particles.
- Gradual increase in cake pressure from zero pressure to that of the first roll.

Wedge Section Design

Straight Wedge

Wedge Section Design

Curved Wedge Zone

CURVED WEDGE IN ACTION

- ENCAPSULATES EDGE OF BELT
- ELIMINATES WASH OUT OF SOLIDS

11

Pressure Zone

- Cake thickness is relatively fixed, so the resistance to expressed filtrate is relatively fixed.
- Longer time under pressure means more liquid is expressed.
- Slower belt speed enhances performance.

Pressure Section Design

Pressure = $(2T^*W) / D^*\pi^*W * (R/360)$ =2T/D $\pi(R/360)$

Where: T = Belt Tension

W= Belt Width

D= Roll Diameter

R = Degrees of roll wrap

Notice outer belt has longer belt path than inside belt

Pressure on cake is inversely proportional to roll diameter

13

Pressure Section Design

Time under pressure

Pressure Section Design

- Number of Rolls: More rolls, more time under pressure; but higher shear and reduced belt life.
- Diameter of Rolls: Decrease in diameter.
- Number of Perforated Rolls
- Roll Construction: Rigid
- Roll Coating: Reduce wear on belt.

Optimization Parameters

- Hydraulic Loading gpm
- Solids Loading or Throughput lb/hr
- Chemical Dosage lb / dry ton
- Discharge Cake Solids %wt
- Solids Capture %

Optimization Parameters

Focus on Solids Capture

- Most overlooked parameter
- Run clean first, then improve other parameters
- Often leads to improvement in other parameters
- Shapowie!!
 - Clean release belts clean before showers
 - No build-up on rollers
 - Clearest possible filtrate

Why Does it Matter?

- Poor Performance can be 80%, or as low as 60% Solids Capture
- Filtrate often returned to head of plant
- Significant load
 - Ratio to wwtp size
 - Expensive
- Running "dirty" problems for press

I Want Numbers

Plant Information	VALUE	VALUE	VALUE	UNITS
Average Plant Flow	1	3	10	MGD
Yearly Sludge	150	450	1500	Dry Tons per Year
Solids Throughput - Yearly	300000	900000	3000000	Dry Pounds per Year
Solids Throughput - Weekly	5769	17308	57692	Dry Pounds per Week
Solids Conture	VALUE	VALUE	VALUF	UNITS
Sonus Capture	VALUE	VALUE	VALUE	01115
Recycled at 60% capture	120,000	360,000	1,200,000	lbs returned to head of plant (yr)
Recycled at 80% capture	60,000	180,000	600,000	lbs returned to head of plant (yr)
Recycled at 98% capture	6,000	18,000	60,000	lbs returned to head of plant (yr)

CHIPP BOATTAN

Numbers Aren't My Thing

- Car Wash
- Mop The Floor
 - Imagine half of the grime decides to stay
 - Accumulation
- Toughest stuff to capture, fines

Low Solids Capture

Dirty Filtrate

25

Catch Me Running Dirty

- Belt Looping
- Belt Wrinkles and Stretching
- Increased Maintenance
 - Slide Strips
 - Rollers
 - Belts
- Should Not Need to Hose That Often

Belt Looping

Belts Stretched Unevenly

Poor Distribution

Ways to Improve

• Polymer

- Newer, jazzy polymers. Cross-linked, high MW
- Proper activation & dilution
- Consistency to the Press
- Remove Variables Whenever Possible
- Take it Step by Step
- Specific Belt Press Notes

Emulsion Polymer Unit

- Check Inlet Water Pressure
- Check Mixing in Chamber
- Check Concentration
- Flooded Suction

Fluctuating Water Pressure

• Worse than you think

Fluctuating Water Pressure

• Worse than you think

Fluctuating Water Pressure

• Worse than you think

Consistency to the Press

Consistent Polymer Flow

- Volume of Flow (gpm)
- Concentration (%)
- Consistent Sludge Flow
 - Volume of Flow (gpm)
 - Consistent Make-Up
 - Percent Solids
 - Ratio of Blend or Type of Sludge

Remove Variables

- Consistency is Key
 - Blend Tank
 - Meter in outside sources
 - Mix settled sludges
- Easier to Find the Right Chemistry
 - A single polymer program is best

Conditioning at Feedbox

Strong Floc with Clear Separation

Clean Initial Filtrate

Clean Filtrate at End of Gravity Zone

Belt Speed

- Slow belts until cake is roughly 3/8" to 5/8"
- Time under pressure is important

Belt Tensions

Specific Belt Press Notes

- Full Belt Width
- Slower Belt Speeds
- Showers
 - Pressure
 - Nozzles
 - Angles
- Doctor Blades
- Worn Rollers, Slide Strips and Belts

Poor Distribution

Shower with Plugged Nozzle

Post Shower Rollers

Thank You

questions?

