AERZEN USA

Efficiency Comparisons Between Aeration Blowers
Evaluation of Blower Technologies

Introduction

- Aeration System
 - Largest Consumer of Power in WWTP
 - 50% to 60% of plant operating cost
 - Life Cycle Costs far exceeds Initial Capital Costs

![Pie chart showing average operating costs of an air mover over 10 years]
Introduction

- Purpose of Presentation
 - Evolution of Blower Technologies
 - Matching the Technology to the Application
 - Right-Sizing of Blowers
 - Accurate Evaluation of Overall Costs
Traditional Blower Technologies

- Two Lobe Positive Displacement
 - Variable Speed

- Multi-Stage Centrifugal
 - Inlet Throttle Valve or Guide Vanes
 - Variable Speed
PD Blower Design Principles

- Positive Displacement Blower
 - Constant volume against varying pressure
 - Flow changes by varying speed with VFD
 - Large Turndown (Typically 4:1)
 - Easily adapts to changes in pressure & temperature
 - Widely used / Low initial cost
PD Blower Evolution

- Two-Lobe to Three-Lobe Technology
 - Pulsation Cancellation
 - Less wear and tear on components and piping
 - Single Forging of Shaft and Impeller
 - Stronger, More Stable at Higher Speeds
- More Effective Noise Reduction
 - Quieter packages
- Upgraded Seals (Piston Ring)
 - Longer maintenance intervals on internals
2-Lobe Conveying Cycle

Atmospheric pressure

System pressure

Abrupt pressure equalization causes noise and shocks (pulsations) 4 times per revolution.
Three-Lobe Conveying Cycle

Integrally cast return ports gradually pressurize casing.

Squeeze pulse is 180° out of phase with Pressure pulse.
Limitations of PD Blowers

- Efficiency
 - Slip between Rotors
 - Less efficient at Lower Flows
 - Less efficient at Higher Pressure
Compressor Design Principles

- Positive Displacement Compressor (VML)
 - Used since the 1940’s (Deep Cell Aeration)
 - Rotors mesh, compressing air inside housing
 - Flow changes by varying speed (VFD)
 - Best around 20 to 30 psig
 - Higher capital cost (2X PD blower)
Compressor Design Principles

- Positive Displacement Compressor (VML)
 - Used since the 1940’s (Deep Cell Aeration)
 - Rotors mesh, compressing air inside housing
 - Flow changes by varying speed (VFD)
 - Best around 20 to 30 psig
 - Higher capital cost (2X PD blower)
Evaluation of Blower Technologies

Limits of Screw Compressors

- Efficiency
 - Less efficient at Lower Pressures

![Graph showing adiabatic efficiency as a function of inlet flow for different pressures (8 PSIG, 10 PSIG, 12 PSIG) for VML60 model.](image-url)
Adaptation to WWTP Use

- **Low Pressure:**
 - 3 – 7 PSIG
 - Twisted Lobes

- **High Pressure:**
 - 7 – 15 PSIG
 - Screw Compressor
Centrifugal Design Principles

- Multi-Stage Blower
 - Widely used technology
 - High Flow, Small Footprint
 - High Efficiency at Design Point
Centrifugal Design Principles

- Centrifugal Blowers (Dynamic Compression)
 - Kinetic Energy to Potential Energy
Centrifugal Evolution

- Multi-Stage
 - Repeats the Compression Process in Series
 - Relatively low speed
 - 3600 RPM
Centrifugal Evolution

- **Turbo Blower – Gear Drive**
 - High efficiency, even at turndown
 - Bullgear raises Impeller Speed (Single Stage)
 - Inlet guide vanes and discharge diffuser vanes
 - Complex control system
 - High capital cost
 - More Cost Effective >400HP
Centrifugal Evolution

- High Speed Turbo Blower
 - Newest in WWTP market (<5 years)
 - Air-Foil Bearings, Permanent Magnet Motor
 - Integral VFD and Control System
 - More Affordable than Gear Drive
 - Wide Range of Sizes
 - Life Cycle Cost Payback
Centrifugal Design Principles

- Dynamic Compression
 - Sweet Zone of Efficiency
- Must Reside on Performance Map
 - Flow too Low or Pressure Too High: Surge
 - Flow too High or Pressure Too Low: Choke
- Performance Varies with Air Density
 - Summer (High Loads, Low Air Density)
 - Winter (Low Loads, High Air Density)
Centrifugal Design Principles
What is Surge?

- Compressor generating more air than needed by the system.
- Compressor's inability to continue working against the already-compressed air behind it.
- Oscillation of discharge pressure and flow rate.
Centrifugal Design Limitations

- Control Is Essential
 - Protect the Blower
 - Satisfy System Air Requirements
Centrifugal Blower Control

- Multi-Stage:
 - Throttling Valve / Inlet Guide Vanes
 - Speed Control (VFD)
- Gear Drive Turbo:
 - Inlet and Discharge Vanes, Speed Control
 - Control System (PLC)
- High Speed Turbo:
 - Motor Control (Speed, Current)
 - Control System (PLC or CPU)
What Technology to Choose?
Start With the System

- System Flow Requirements
 - Minimum, Maximum, Average
 - Factor in Diurnal Minimum
- Pressure (Constant or Varied, and How Much)
- Site Conditions (Elevation, Ambient Range)
- Control Requirements
 - On/Off, VFD, Combination
Evaluation of Blower Technologies

Performance Comparison

Hybrid Comparable to Turbo

Performance Advantage Vs. PD

Temperature Issues at Low Flow

Specific Power Comparison Delta Hybrid D62S, GM 60S, and TB100-1.0
(Inlet T1=68F, P1=14.5 PSIA, RH=0%) P2=11.6 PSIG

<table>
<thead>
<tr>
<th>SCFM/kW</th>
<th>D 62S</th>
<th>GM 60S</th>
<th>TB100-1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.6</td>
<td>19.1</td>
<td>23.2</td>
<td>20.7</td>
</tr>
<tr>
<td>14.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flow SCFM

400 800 1200 1600 2000
Temperature Concerns

Temperature Limits
Turndown at Higher Pressures for Standard PD
Performance Comparison

Specific Power Comparison: Delta Hybrid D62S, GM 90S, and TB100-0.8

- Efficiency Difference in Flow Range
- Comparable Design Point
Evaluation of Blower Technologies

Performance Comparison

Specific Power Comparison: Delta Hybrid D62S and TB100-1.0S
(Inlet T1=100F, P1=14.09 PSIA, RH=80%) P2=12 PSIG

Comparable Efficiency Throughout

Greater Turndown

Comparative Graphs
Performance Comparison

Break-Even Point

Inlet Conditions:
P1 = 14.7 PSIA
T1 = 68 F
RH = 36%
Discharge P = 8 PSIG
Sensitivity Analysis

Sample Power Comparison - Cheshire CT

<table>
<thead>
<tr>
<th>System</th>
<th>Weight</th>
<th>TM150-0.6T</th>
<th>D98S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W-T-P kW</td>
<td>KW-Hours</td>
</tr>
<tr>
<td>ICFM</td>
<td>PSIG</td>
<td>% Time</td>
<td></td>
</tr>
<tr>
<td>3312</td>
<td>8</td>
<td>5%</td>
<td>106.5</td>
</tr>
<tr>
<td>2900</td>
<td>8</td>
<td>5%</td>
<td>93.3</td>
</tr>
<tr>
<td>2538</td>
<td>8</td>
<td>10%</td>
<td>82.8</td>
</tr>
<tr>
<td>2334</td>
<td>8</td>
<td>25%</td>
<td>77.1</td>
</tr>
<tr>
<td>1800</td>
<td>8</td>
<td>25%</td>
<td>62.4</td>
</tr>
<tr>
<td>1500</td>
<td>8</td>
<td>20%</td>
<td>53.7</td>
</tr>
<tr>
<td>923</td>
<td>8</td>
<td>10%</td>
<td>53.7</td>
</tr>
<tr>
<td>100%</td>
<td></td>
<td>606674</td>
<td>549646</td>
</tr>
</tbody>
</table>

Cost per kWH:
- $0.1426
- $0.1426

Annual Power Cost:
- $86,511.68
- $78,379.55
Site Conditions

31% Variation in O₂ Content

14% Variation in O₂ Content
Why Site Conditions Matter

- Density affects compression ratio
 - Higher Elevations Limit PD
- Percent O\textsubscript{2} impacts aeration requirements
 - ICFM vs. SCFM
- Maximum flow on Hottest Day
 - Perfect Storm Design
- Minimum flow on Coldest Night
 - More Likely
System Control Requirements

- On/Off Cycling
 - PD Blower / LP Screw / Multi-Stage - Good
 - NEMA Motor (4-6 starts/hour)
 - VFD Extends # of Starts
 - Turbo – Challenged if cannot run unloaded
 - High Frequency VFD may limit daily starts
 - Airfoil Bearings limited to 20,000 starts
 - Or <20,000 (Depending on Design)
Idling/Scrolling Function

- Bypass Valve Opens
- RPM Drops to ~10,000
 - Sufficient to maintain “loft” on Bearings
 - Minimal Power Draw (Avg 2%: 2 – 5 kW)
- Avoids Bearing Wear
- Avoids Start/Stop Cycles
- Useful in SBR/MBR Systems
Right-Sizing

Example: 10:1 turndown with 3 rotary lobe blowers, two of which are VFD-driven and 1 fixed speed

- Minimum demand on coldest day
- Maximum demand on hottest day
Right Sizing Options

- One 100% Unit/System with common spare.
 - Base Load, Upper Flow Range
- Two 50% Units with Common spare.
 - Greater Net Turndown
 - More Machinery
- Base Load Machine, Swing Machine
 - Mixed Technology
 - Optimize Efficiency Throughout Range
Life Cycle Costs

- Energy Usage
 - Anticipated Operating Points
 - Assign Time and Conditions
 - Require Manufacturer to Provide TOTAL kW
 - Include ALL Mechanical & Electrical Losses
 - ASME PTC-13
Life Cycle Costs

- Installation
 - Indoor or Outdoor
 - Integral VFD or Separate
 - Available Footprint
Life Cycle Costs

- Maintenance:
 - PD (Blower, Compressor):
 - Annual Oil Change
 - Belt Change (12-18 months)
 - Air Filters as needed
 - Bearings/Seals (15-20 Years)
 - Turbo:
 - Air Filters: Prefilter (1-2 Mos), Fine Filter (6 Mos)
 - Impeller Cleaning (3 Years)
 - Electronics (capacitors) (5 Years)
 - PM Motor (10 Years)
Your Final Decision

- Accurate Energy Cost Evaluation
- Life Cycle Costs
- Proven Technology
- Serviceability
- Accountability of the Manufacturer
Thank you for your Attention