Energy Conservation and Recovery in Wastewater Treatment Facilities

OWEA 2010 Biosolids Specialty Workshop – University Plaza Hotel & Conference Center December 9^{th -} Columbus, Ohio

J. E. Smith, Jr, DSc, BCEE C. Dassanayake, PhD, PE

Electricity Usage by Typical Activated Sludge Facilities (WEF)

Solutions for Life[™]

Presentation Overview

- Conserving the Energy Used in Treating Wastewater
- Transforming the Constituents in Wastewater into Valuable Products
- Production of Biogas
- Enhancing Gas Production
- Combined Heat and Power
 - ✓ Gas Cleanup
 - ✓ Power Production
 - ✓ Heat Recovery

Why is Energy an Important Consideration in Wastewater Treatment?

- Est W&WWT Electric Usage at 100 B KWH/yr and a cost of \$7.5B/yr
- On average, wastewater treatment facilities spend
 ~ 25 % of their operating budgets on energy.
- Energy costs are second only to labor costs
- Average usage of electricity = 1,200 kWH/MG
- Average daily residential energy use is
 31 kWh per home

Electricity Requirement for Typical Activated Sludge Facilities

Energy Conservation and Recovery in Wastewater Treatment Facilities

Resource Centers Convert Wastes into Valuable Products

ENERGY FACTORY

Aeration Tank The Major Place to Save Energy

Some Considerations:

- Can the loading on the aeration tank be lowered?
 - ✓ Can primary clarification be improved?
- Do I have the most efficient aeration equipment?
- Air Delivery Mechanism
 - ✓ Ratchet delivery up or down-5:1
 - ✓ Monitor DO in Basin(s)
 - ✓ Automatic Controls

Enei

Aeration Efficiency

Aerator Type	Aeration Efficiency, kg O ₂ /kWh (lb O ₂ /hp hr)			
—	Standard Conditions	Field Conditions		
Fine-pore aeration ¹	5.0 - 6.5 (8.2 - 10.7)	2.5 – 3.5 (4.1 – 5.8)		
Course bubble aeration ¹	2.5 - 3.5	1.0 – 2.0		
Surface centrifugal (low speed)	1.2 – 3.0	0.7 – 1.4		
Surface centrifugal (draft tube)	1.2 - 2.8	0.7 – 1.3		
Surface axial (high speed)	1.2 – 2.2	0.7 – 1.2		
Downdraft open turbine	1.2 – 2.4	0.6 – 1.2		
Downdraft closed turbine	1.2 – 2.4	0.7 – 1.3		
Submerged turbine, sparger ¹	1.2 – 2.0	0.7 – 1.1		
Submerged impeller	1.2 – 2.4 0.7 – 1.1			
Surface Brush and blade	0.0 - 2.2	0.5 – 1.1		

Village of Palmyra WWTF

Courtesy of Joe Cantwell, SAIC

Energy Conservation and Recovery in Wastewater Treatment Facilities

Fluidized Bed Incineration with Energy Recovery

Courtesy Bob Dominak, NORSD

Utilize Materials in Wastewater to Create Valuable Products like Energy

Transformation Like Anaerobic Digestion

Biosolids for Beneficial Use

US Wastewater Treatment Facilities (WWTFs) with Anaerobic Digestion & Off Gas Utilization

- # WWTFs in USA is 16,583
- # WWTFs in USA treating a wastewater flow > 5 MGD is 1,066 or ~ 6 % of total number
 - \checkmark # of these with anaerobic digesters is 544
 - ✓ # of facilities with anaerobic digesters that utilize biogas is 106

Source: 2004 Clean Watersheds Needs Survey

Relationship Between the Organics in Wastewater / Residuals and Biogas

12 cf gas/lb VS consumed

600 BTUs/cf gas

Requirements for Anaerobic Digestion

Process Conditions

- temperature
- retention time
- organic loading rates
- chemical environment (pH, volatile fatty acids, ammonia, etc.)

Feedstock

- biodegradability
- moisture content and particle size
- C/N ratio
- presence of inhibitory or toxic compounds

Energy Conservation and Recovery in Wastewater Treatment Facilities

Composition of Raw Primary and Waste Activated Sludge Solids

Waste Activated Sludge

Volatiles - Readily Biodegradable

Enhance Primary Clarification

- Polymer addition
- Get other benefits (p-removal)

Energy Conservation and Recovery in Wastewater Treatment Facilities

Composition of Raw Primary and Waste Activated Sludge Solids

Energy Conservation and Recovery in Wastewater Treatment Facilities

Can Waste Activated Sludge Be Made More Biodegradable?

Processes for Pre-Treating WAS

Cambi

Crown

OpenCEL

CAMBI's Performance Claims

Parameter	Mesophilic AD	CAMBI + Meso AD
Digester Feed (%TS)	4 – 6	12 – 15
VSLR (kg VS/m ³ /d)	1.5	3.5
VS Destruction (%)	40 – 55	55 – 65
Pathogen Content	Class B	Class A
Dewatered Cake TS (%)	20 – 25	30 - 35

Sludge Disintegration Processes

- Macerate sludge to homogenize
- Increase pressure (12 Bar) with PC pump
- High pressure mixer, flow into disintegration nozzle
- As the flow exits the nozzle, cavitation occurs rupturing cell structure
- Sludge can be passed through system three times before discharge to the digesters

Crown Disintegrator Wiesbaden WWTP - 60m3/hr

Performance Data by Crown

	VSr %			Biogas production cf/lb VS des		
Site Name	Before	After	% inc	Before	After	% inc
Wiesbaden Biebrich	32%	38%	20.0%	25.1	24.7	-1.7%
Taunusstein	32%	44%	38.9%	22.6	20.8	-7.8%
Ingelheim	36%	49%	34.1%	17.0	17.7	4.4%
Ginsheim	45%	54%	19.9%	14.7	14.3	-3.1%
Münchwilen	32%	43%	32.0%	20.2	19.1	-5.3%
Rosedale WWTP	51%	62%	21.6%	18.2	17.9	-1.8%
Average	38.1%	48.3%	27.7%	19.6	19.1	-2.6%

Energy Conservation and Recovery in Wastewater Treatment Facilities

Pulsed Electric Field How it Works

Full-Scale Installation at Mesa, AZ

Performance Data:

- Greater than 10% increase in VSr
- Increase in methane by 55-60%
- Sludge treated with pulsed electric field is a potential carbon source for denitrification

Operating Data:

- Plant flow: 10-12 MGD
- Thickened PS/WAs mixture 50,000 60,000 gpd
- Solids content: 4 6%
- In operation since Sept. 2007

Favorable gas production configurations 2-phase AG (Acid/Gas) **Anaerobic Digestion** gas **Raw sludge** Digested (5-8%) biosolids Acid phase Gas phase 1.5 days 10 days

Energy Conservation and Recovery in Wastewater Treatment Facilities

Increase Biogas Production by Addition of Other Feedstocks

- High strength organic wastes that are easily degradable
- Examples:
 - ✓ Fats, oils, and grease (FOG)
 - ✓ Restaurant wastes
 - ✓ Food processing wastes
 - ✓ Solid wastes

Example of Innovative Approach EBMUD, CA

Food Waste vs. Wastewater Solids Comparison

Parameter	Food Waste	Wastewater Solids	
	բաթ		
Volatile Solids in Feed (%)	85-90	70-80	
Volatile Solids Loading (lbs/ft3-day)	0.60 +	0.20 max	
COD Loading (lbs/ft3-day)	1.25 +	0.06-0.30	
Total Solid Fed (%)	10+	4	
Volatile Solids Reduction (%)	80	56	
Hydraulic Detention Time (days)	10	15	
Methane Gas Produced (meter³/ton)	367	120	
Gas Produced (liters/liter of feed)	58	17	
Biosolids Produced (lbs/lbs fed)	0.28	0.55	

Biogas Utilization Alternatives

Problems from Contaminants

Moisture

- \checkmark causes corrosion, together with acid gases
- H_2S
 - causes corrosion in mechanical moving parts of prime movers
 - causes breakdown of lubricants, leading to bearing, piston ring and seal failures

Siloxanes

- causes scaling leading to failure of mechanical components
- causes breakdown of lubricants, leading to bearing, piston ring and seal failures

H2S – Impact on Gas Utilization

- 3,100 ppmv is high (200 ppmv acceptable in leanburn engines)
- Biogas H2S will be <200 ppmv when ferric is added for sulfide and struvite control
- Sulfide removal to very low levels is needed to protect and extend life of activated carbon if used
- If ferric is not used for struvite control, one can compare the benefits and costs of ferric addition vs. gas treatment for sulfide removal

Siloxanes – Impact on Gas Treatment

- GE Jenbacher says, "...only reliable way to monitor siloxanes is to measure rate of siloxane buildup in engine oil..."
- GE Jenbacher uses the following guidelines as preliminary indicators for siloxane removal:
 - No gas treatment is needed if total siloxane concentration (as Si) in biogas is below 5 ppmv
 - Increased maintenance to be expected with no gas treatment if total siloxanes in biogas are 5 -10 ppmv (as Si)
 - Siloxane removal is strongly recommended if total siloxanes
 >10 ppmv (as Si) in biogas

Tradeoffs between conservative design and maintenance effort are apparent

Problems with Siloxane

The sand-like material is SiO₂ produced through oxidation (burning) of the volatized siloxanes contained in the digester gas. Figure shows siloxane deposition on boiler tubes.

Methods of Gas Conditioning

Moisture Removal

- ✓ Refrigerant: Dewpoint of 40 °F
- ✓ Adsorption by Dessicant: Dewpoint of -40 °F

H₂S Removal

- ✓ Precipitation (liquid): Iron Salts to digester
- ✓ Precipitation/Scavenging: Iron Sponge, Sulfa Treat
- ✓ NaOH Scrubbing/Biological Oxidation: THIOPAC
- ✓ NaOH Scrubbing/Chemical Oxidation: Lo Cat, Apollo

Siloxane

- ✓ Activated Carbon: Applied Filter Technology
- ✓ Refrigeration: Dewpoint of -10 °F to -20 °F

Comparison of Treatments for Biogas Contaminant Removal

Treatment	Technologies & Sample Vendors	Typical Removal Rates	Estimated Installed Equipment cost for 100 scfm of Biogas flow ^{1,2}
Drying	Desiccant : Van-Air	Desiccant: 10-20 °F below ambient dewpoint (pressurized).	Desiccant: \$3,500 – 5,500
	Refrigerated Dryer : Van-Air	Refrig. Dryer: down to 35-50 °F final pressurized dewpoint	Refrig. Dryer: \$30,000 – 40,000
	Cyclic Refrigeration/Deep Dryer: Pioneer	Deep Dryer: -20 °F final dewpoint	Deep Dryer: ³ \$85,000 – 100,000
H2S Removal	Iron Sponge: Various	Iron Sponge, Sulfa Treat: 99%	Iron sponge:
			\$25,000-35,000
	Sulfa Treat: Sulfa Treat	Alkaline sorbent: down to 50 –	Sulfa Treat:
	Activated Carbon: Various		\$30,000-50,000
	Liquid Catalyst: Apollo	Biological – 90-99%	Act Carbon 4
	Liquid Catalyst. Apolio		\$60.000-75.000
	Biological: NIRAS		, , , , , , , , , , , , , , , , , , , ,
Siloxane Removal	Regenerable Activated Carbon: Applied Filter Technology	Activated Carbon: down to ppbv levels	Act. Carbon (for siloxane only): \$6,000 – 12,000
	Regeneratable Resins: various		Deep Drver: ³
	Cyclic Refrigeration/Deep Dryer: Pioneer		\$85,000 - 100,000
	Liquid Absorption: Dow Chemical, Selexol		

Energy Flow Schematic

Gas Utilization Equipment Efficiency

Technology	Net Electrical Efficiency		Net Thermal Efficiency		Size Range
	Range %	Typical %	Range %	Typical %	ĸw
Internal Combustion Engine	25 – 45	33	40 – 49	40	50 – 5K
Internal Combustion Engine – Lean Burn		37			
Gas Turbines	23 – 36	30	40 – 57	40	250 – 250K
Microturbines	24 – 30	27	30 – 40	35	30 – 250
Steam Turbine	20 – 30	25	20 – 45	45	500 – 1,300K
Stirling Engine	25 – 30	27	45 – 65	60	1 – 50

Courtesy WEF MOP 32, 2009

Power Generation Cost Summary Comparison for Different Approaches

	Installed Cost (\$/kW)	Operating Cost (\$/kWh)	Power Production Cost* (\$/kWh)
Gas Turbines	\$2,000	\$0.010	\$0.04
IC Engines	\$1,700	\$0.015	\$0.04
Microturbines	\$3,000	\$0.016	\$0.06
Fuel Cell	\$8,500	\$0.035	\$0.16

*10 year write down @5%

Presentation Review

- Conserving the Energy Used in Treating Wastewater
- Transforming the Constituents in Wastewater into Valuable Products
- Production of Biogas
- Enhancing Gas Production
- Combined Heat and Power
 - ✓ Gas Cleanup
 - ✓ Power Production
 - ✓ Heat Recovery

Questions

Solutions for Life[™]

Opportunities for and Benefits of Combined Heat and Power at Wastewater Treatment Facilities

Prepared by: Eastern Research Group, Inc. www.erg.com and Energy and Environmental Analysis, Inc. www.eea-inc.com

Prepared for:

U.S. Environmental Protection Agency Combined Heat and Power Partnership www.epa.gov/chp

April 2007

