Easterly WWTP – Dry and Wet Weather Treatment Strategies

OWEA 2017 Technical Conference & Expo Robert Bonnett PE, BCEE, Plant Superintendent, NEORSD Easterly WWTP Robert Hrusovsky PE, BCEE Facilities Design Manager, MWH, now part of Stantec

Northeast Ohio

now part of

tantec

Combined and Separate Sewer Areas

Regional Sewer District

Δ McMonagle Administration Building- 3900 Euclid Avenue Θ Environmental & Mantance Services Center- 4747 E. 49th Street Е Easterly Treatment Plant- 14021 Lakeshore Boulevard S Southerly Treatment Plant- 6000 Canal Road W Westerly Treatment Plant- 5800 W. Memorial Shoreway Combined Sewer Area Seperate Sewer Area EASTERLY WASTEWATER TREATMENT PLANT INTERCEPTOR SYSTEM E. 140th/E. 152nd-Ivanhoe Interceptors Easterly Interceptor Doan Valley Interceptor **Dugway Interceptor** Heights-Hilltop Interceptors & ICRS Lakeshore-Nottingham interceptors SOUTHERLY WASTEWATER TREATMENT PLANT INTERCEPTOR SYSTEM **Big Creek Interceptor** Cuyahoga Valley Interceptor Mill Creek Interceptor Southerly Interceptor Southwest, West Leg Interceptors & ICRS WESTERLY WASTEWATER TREATMENT PLANT INTERCEPTOR SYSTEM Low Level Interceptor Northwest Interceptor Walworth Run Interceptor Westerly Interceptor

Easterly WWTP Service Area

INTERCEPTOR SYSTEM	SERVICE AREA (miles) ²	LENGTH OF INTERCEPTORS AND ICRs (miles)		
Easterly	38	48		
Heights- Hilltop	38	46		
Collinwood	13	16		
Northcost Ohio				

Stantec

Plant Wet Weather Capacity: 400 MGD Secondary Treatment: 400 MGD Wet Weather Flow: >1,000 MGD Average Daily Flow: 65-85 MGD

Northeast Ohio

Easterly WWTP 2016 HIGHLIGHTS

ACCOMPLISHMENTS	METRIC
COMPLETE TREATMENT	26.26 BILLION GALLONS
AVERAGE DAILY FLOW	71.7 MGD
NPDES PERMIT	ALL PERMIT REQUIREMENTS MET
BUDGET / ACTUAL	\$ 8.84 MILLION / \$ 7.77 MILLION
NUMBER OF EMPLOYEES	55

Easterly WWTP NPDES PERMIT REQUIREMENTS

Parameter	Units	Monthly Conc.	Weekly Conc.	30-Day Load.	Weekly Load.
				(kg/day)	(kg/day)
Total Suspended Solids	mg/L	20	30	11,734	17,600
Oil and Grease	mg/L	<u><</u> 10	grab 2x/mont	h year roun	d
Total Phosphorus	mg/L	1.0	1.5	587	880
E-Coli (Summer)	#/100 mL	126	284	geometr	ric mean
Total Chlorine Residual	mg/L	<u><</u> 0.03	<mark>38</mark> grab 3x/da	y May 1 – C	Oct 31
Total Mercury	ng/L	4.5	-	0.00264	-
рН		between 6.0 and 9.0 continuous			
CBOD5	mg/L	15	22.5	8,800	13,200

Stantec

Influent Process Flow Diagram

Plant Process Flow Diagram

Stantec

Operational Challenges

- Raw influent flow rates vary significantly due to storms/runoff in the combined sewer systems
 - Average daily flow rates 65 85 MGD
 - Wet weather flow rates can exceed 1,000 MGD (1 BGD)

Operational Challenges

- Maintain process performance at average daily flow rates using a select number of unit process tanks and accommodate sudden wet weather flow
 - <u>Ten State Standards</u>:
 - Primary Settling Tanks SOR 1,000 – 3,000 gal/day–ft²
 - F:M ratio
 - 0.2 lb/lb-day
 - Final Settling Tanks SOR 800 – 1,200 gal/day–ft²

Easterly WWTP 2016 Average Wastewater Concentrations

PARAMETER	Raw Influent (mg/l)	Primary Effluent (mg/l)	Treated Effluent (mg/l)
Total Suspended Solids	160	50	6
CBOD ₅	80	47	4
Total Phosphorus	2.23	1.58	0.45

Dry and Wet Weather Process Tanks

PROCESS TANKS	TOTAL	DRY WEATHER	WET WEATHER
AERATED GRIT	4	2	4
PRIMARY SETTLING TANKS	12	4	12
AERATION TANKS	8	5	7 - 8
FINAL SETTLING TANKS	26	16 -18	24 - 26

Regional Sewer District **(III)** MWH. Dotter **(III)**

Dry Weather Strategies

Using 75 MGD Primary Settling Tank SOR

- 4/12 PSTs = 1,974 gal/day-ft²
- Maintain higher Primary Effluent C_{BOD}
 <u>F:M Ratio</u> (MLSS = 1,200 mg/l)
- Using 47 mg/l Primary Effluent C_{BOD}
- 5/8 ATs = 0.15 lb/lb-day

Final Settling Tank SOR

18/26 FSTs = 1,269 gal/day-ft²

During dry weather flow... Aeration Tanks

1-1

Mixed Liquor Channel

During dry weather flow... FSTs

Tools available for increasing flow rates:

- Radar/Weather forecast
- Offsite control structure (LSRS)
- Three (3) Influent flow meters and channel levels inside the plant
- Future flow meters in two (2) upstream interceptors (1 mile from plant)

Moderate Increase in Flow Rate

Northeast Ohio

- During increasing flow rates standby process tanks are used as equalization basins
- Filled *slowly* with wastewater to prevent damage to equipment inside the tanks
 - PSTs inlet gates OPEN 3%
 - Aeration tanks inlet gates OPEN 3%
- FSTs inlet gates OPEN 100%

Aeration Tank Inlet Gates

Secondary System Improvements to increase hydraulic capacity

Aeration Tanks

Final Settling Tanks

Northeast Ohio Regional Sewer District

Secondary System Improvements to increase hydraulic capacity

Regional Sewer District

Stantec

MWH^o part of

2

Wet Weather Strategies Improvements to existing 20 FSTs

- Density current baffles
- Polymer and ferric piping
- Effluent Gate Actuators
- Mixed liquor distribution chamber modifications (cut throat flumes)

Density Current Baffle (reduce short circuiting)

Energy Dissipating Inlet (EDI)

Wet Weather Strategies – 6 new FSTs

Sludge Collection Arm (Designed to rapidly remove settled solids)

Sharp Increase in Flow Rate

Northeast Ohio Regional Sewer District

- Sharp increases in influent flow rates can result in the need to have more tanks in full operation before the empty tanks are filled
 - Primary Settling Tanks
 - Aeration Tanks
 - Final Settling Tanks

 At increasing flow rates, while PSTs are slowly filling – open two (2) gates to direct primary influent channel flow to the Settled Sewage channels leading to the Aeration Tanks

primary tanks

Northeast Ohio Regional Sewer District

Case Examples

 During construction, wet weather caused a sharp flow increase. The Primary Influent diversion gates were opened slightly to divert incoming flows as PSTs were filling.

Case Examples

Other construction activities:

- Two ML pipes non-operational
- Stop logs and bulkheads in ML channel
- ML interconnect between the west and east aeration systems being installed

What happened during a sudden increase in flow?

What happened during a sudden increase in flow?

Future Activities

- Design & install baffles at the PST inlet gates
- Automate the operation of the Primary Influent diversion gates (modulate gate based on channel levels)
- Design & install baffles at the Aeration tank inlet gate

Northeast Ohio Regional Sewer District

Future Activities

- Activated Sludge Process
 - Each Aeration Tank has four passes
 - Pass 1 has two Settled Sewage gates
 - Passes 2, 3 and 4 each have one gate
- Dry weather flow (Conventional)
 - Settled Sewage into passes 1 & 2
- Wet weather flow >225 MGD (Contact Stabilization)
 Open Settled Sewage gates into passes 3 & 4. Close gates into passes 1 & 2

now part of

Operational Challenges

Wet Weather to Dry Weather -

Drain and clean tanks quickly between high flow events

Odors – Check wind direction before dewatering tanks

Final Effluent Screw Pumps