Integrated Wet Weather Flow Management: Southerly Optimized Parallel Treatment OWEA June 29, 2017 Harry Shaposka Douglas Reichlin

Northeast Ohio

Northeast Ohio Regional Sewer District

- Who we are...
 - Regional wastewater utility created in 1972 by court order
 - Separate and distinct from the City of Cleveland and Cuyahoga County
- What we do...
 - Servicing all or part of 62 member communities
 - 1 million customers
 - 90+ billion gallons wastewater treated each year

Northeast Ohio

Background

WH now

- NEORSD signed a Consent Decree to provide Wet Weather Treatment at three WWTPs
- \$3 Billion dollar program Project Clean Lake
 - Collection System Projects
 - Tunnel Storage Projects

Stantec

- Chemically Enhanced—High-Rate Treatment (CEHRT)
- Expand biological capacity of Southerly and Easterly WWTPs.

Treatment Capacity

WH now part of

Stantec

Regional Sewer District

Southerly Wastewater Treatment Facility

- 5- Major interceptors (3- C.S. areas, 2 S.S. areas)
- 125 MGD average daily flow
- Up to 1,200 MGD peak Wet Weather flow
 - Gravity feed to headworks w/ no plant raw bypass
 - Primary Effluent Bypass (PEB) gravity flow
 - Potential for flooding plant in high River conditions!
- Series secondary treatment 400 MGD peak flow
 - Gravity First Stage: Carbonaceous BOD and TSS
 - Pumped Second Stage: Nitrification

MWH now part of

Stantec

Background & Performance Objectives

Reduce existing PEB activations & pollutants

- Currently 11/ year in Typical Year w/ 335 MGD max
- Primary Effluent Quality, Not Disinfected

Expand wet weather secondary treatment discharge capacity with "dual outfall" via parallel operation

- 215 MGD First Stage + 400 MGD Second stage
- Reduce PEB to 1/yr in Typical Year w/ 120 MGD max
- CEPT + High Rate Disinfection to PEB to improve quality

Southerly Wastewater Treatment Facility Existing Site and Flow Process Flow Pattern

Southerly Optimized Parallel Treatment (SOPT) Objectives

Northeast Ohio Regional Sewer District

SOPT Overall Project Goals

Safeguard the River

- Meet Consent Decree Requirements
- 400 MGD Second Stage Rated Capacity
- 215 MGD First Stage Rated Capacity
- Effluent meets NPDES Permit (mathematically blended)
- Protect the Plant

Stantec

MWH now part of

- 480 MGD Second Stage Emergency capacity
- 300 MGD First Stage Emergency Capacity
- Emergency collection system relief systems

SOPT Overall Project Goals

	Priority Continuum					
	Safeguard the Riv	Burdenst Alex Blanck				
		Protect the Plant				
Operation Scenario	Dry Weather	Typical Year Wet Weather	Design Maximum Wet Weather	Emergency Operation		
Influent Flow Rates	0 – 200 MGD	201 – 735 MGD	736 – 1,200 MGD	1,200 MGD		
River Level	Up to 25-Year	Up to 25-Year	Up to 25-Year	Up to 100-Year		
Requirements CD						
10 State Standard (25 Yr Flood)						
Protect the Plant						
Process Mode	Series	Parallel	Parallel	Parallel		
1 st Stage Treatment Process (FSAS)	200 MGD	215 MGD	300 MGD	300 MGD		
2 nd Stage Treatment Process (SSAS)		400 MGD	480 MGD	480 MGD		
Primary Effluent Bypass (PEB)		120 MGD	420+ MGD	307 MGD		
Total Flow Rate	200 MGD	735 MGD	1,200 MGD	1,087 MGD		
objective achieved?				(113 MGD) GAP		

Regional Sewer District

Protecting the Plant

Stantec Regional Sewer District Transition

 (\oplus)

MWH now part of

Effluent Blending cBOD

Managing Flows to the Plant

Offloading Additional Flows via Mill Creek Silo Can Reduce Plant Flows

- Complete gate closure reduced flow to plant by 109 MGD (all flow discharges via silo)
- Existing gates and silo

Managing Flows to the Plant

Retrofitting BC-100 with a Weir Gate Allows Relief of Big Creek Interceptor

BCI-SWI Interconnect Increases Offloading Potential: Existing 48" CSO 060

Early Warning System

Near Term

Real-Time Flow Monitoring

- 30-minute Advance Warning
- Cover sufficient tributary area
- Combine with Radar Rain Monitoring

Future Opportunities

Real-Time Operational Forecasting

- Real Time Rainfall & Flow
- Predictive Radar
- Forecast System Response

ICMLive Operational Forecasting

Basis of Design

- Pump and Disinfect First Stage Activated Sludge effluent to the Cuyahoga River Slough
 - 215 MGD nominal wet weather treatment capacity
 - Re-purposed Outfall 003
- Pump 215 MGD to Second Stage Activated Sludge
- Power & Standby Generators
- Protect the Plant during 25 100 year flood stage
 - Up to 300 MGD emergency hydraulic capacity pumping & disinfection

E. Coli vs CT

Regional Sewer District

MWH® part of

Stantec

Disinfection System Contact Tanks

- 2 contact tanks
- Length: Width Ratio is 40:1 for each CCT
- 15' Channel Width with 5, 120' passes per tank

Disinfection Design Criteria Summary

- Need approximately 3 log reduction
- CT = 50 mg/L-minutes

Flow Rate (MGD)	Theoretical Contact Time (Minutes)	Efficiency (%)	Modal Contact Time (Minutes)	Residual Concentration Needed (mg/L)
215	16.0	84.0%	12.5	4.0
300	11.7	78.5%	8.9	5.6

Disinfection System

 $(\square$

MWH now part of

Stantec

Regional Sewer District

Disinfection Chemical Loop Piping

- BIS and NaOCI from Disinfection Building to FSE Pump Station and CCTs
- BIS and NaOCI piping through Tunnels 12, 13, 14, and new tunnel

Stantec

MWH® part of

FSE Pump Station, FSECCTs, Electrical Building, and Generators

FSE Pump Station Pumps

Regional Sewer District

Cross Section of FSE Pump Station and FSECCTs

FSE Chlorine Contact Tanks – Section

FSE Chlorine Contact Tanks

- Tipping buckets mounted to back wall
- 2" NPW Piping to fill tipping buckets
- (2) 96" x 96" Slide
 Gates into Chlorine
 Contact Tanks

MWH[®] part of

Stantec Stantec Regional S

Questions?

douglas.reichlin@stantec.com

ShaposkaH@neorsd.org

