Green Energy – Guild Molecular Gate Technology

Digester Gas Treatment for Energy Production / Pipeline Gas Production from WWTP Digester Gas

The Ohio Water Environment Association
2009 BioSolids Systems Workshop

December 10, 2009

Guild Associates, Inc
• Molecular Gate for CO2 Removal
• Compressors
• Molecular Gate for N2 Rejection
• TSA dehydration
 – Water removal
• Sorbead “Quick-Cycle” dew point control
 – Water and heavy hydrocarbon removal systems
• NGL Removal for CARB standards
• CO2 removal for LNG / Peakshaver plants
• Membrane units
• Helium purifiers
• Chiller Packages
Spec Plant
Installed
Large unit
Installed
<table>
<thead>
<tr>
<th>Unit</th>
<th>Location</th>
<th>SCFM</th>
<th>Status</th>
<th>Separation</th>
<th>Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ohio</td>
<td>140</td>
<td>Relocated</td>
<td>N2</td>
<td>Aug. 2002</td>
</tr>
<tr>
<td>2</td>
<td>California</td>
<td>700</td>
<td>Operating</td>
<td>CO2</td>
<td>May 2002</td>
</tr>
<tr>
<td>3</td>
<td>Texas</td>
<td>700</td>
<td>Operating</td>
<td>N2</td>
<td>Aug 2003</td>
</tr>
<tr>
<td>4</td>
<td>California</td>
<td>7000</td>
<td>Operating</td>
<td>CO2</td>
<td>Dec 2003</td>
</tr>
<tr>
<td>5</td>
<td>Kentucky</td>
<td>1050</td>
<td>Operating</td>
<td>N2</td>
<td>May 2004</td>
</tr>
<tr>
<td>6</td>
<td>Illinois</td>
<td>1750</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>May 2004</td>
</tr>
<tr>
<td>7</td>
<td>Indiana</td>
<td>2100</td>
<td>Operating</td>
<td>N2</td>
<td>Dec 2004</td>
</tr>
<tr>
<td>8</td>
<td>Virginia</td>
<td>1400</td>
<td>Operating</td>
<td>N2 and CO2</td>
<td>Feb 2005</td>
</tr>
<tr>
<td>9</td>
<td>Kentucky</td>
<td>700</td>
<td>Operating</td>
<td>N2</td>
<td>Jan. 2006</td>
</tr>
<tr>
<td>10</td>
<td>SPEC #1 - OH</td>
<td>300</td>
<td>Operating</td>
<td>N2</td>
<td>Dec. 2005</td>
</tr>
<tr>
<td>11</td>
<td>Virginia</td>
<td>1050</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>Sept. 2005</td>
</tr>
<tr>
<td>12</td>
<td>SPEC #2 - WV</td>
<td>550</td>
<td>Operating</td>
<td>N2</td>
<td>Dec. 2005</td>
</tr>
<tr>
<td>13</td>
<td>West Virginia</td>
<td>1050</td>
<td>Operating</td>
<td>N2</td>
<td>April 2005</td>
</tr>
<tr>
<td>Unit</td>
<td>Location</td>
<td>Feed SCFM</td>
<td>Status</td>
<td>Separation</td>
<td>Start-up</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>14</td>
<td>SPEC #3 - ID</td>
<td>350</td>
<td>Operating</td>
<td>CO2</td>
<td>May 2006</td>
</tr>
<tr>
<td>15</td>
<td>Virginia</td>
<td>7000</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>Jan. 2007</td>
</tr>
<tr>
<td>16</td>
<td>West Virginia</td>
<td>1050</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>Jan. 2007</td>
</tr>
<tr>
<td>17</td>
<td>SPEC #4 - WV</td>
<td>1050</td>
<td>Ready to Ship</td>
<td>CO2</td>
<td>TBD</td>
</tr>
<tr>
<td>18</td>
<td>UK</td>
<td>850</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>May 2008</td>
</tr>
<tr>
<td>19</td>
<td>West Virginia</td>
<td>700</td>
<td>Ready to Ship</td>
<td>CO2</td>
<td>TBD</td>
</tr>
<tr>
<td>20</td>
<td>Pennsylvania</td>
<td>1400</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>May 2008</td>
</tr>
<tr>
<td>21</td>
<td>SPEC #5 - ID.</td>
<td>350</td>
<td>Operating</td>
<td>CO2</td>
<td>May 2008</td>
</tr>
<tr>
<td>22</td>
<td>SPEC #6 - IL.</td>
<td>350</td>
<td>Operating</td>
<td>N2</td>
<td>May 2007</td>
</tr>
<tr>
<td>23</td>
<td>California</td>
<td>1000</td>
<td>Operating</td>
<td>CO2</td>
<td>May 2008</td>
</tr>
<tr>
<td>24</td>
<td>Washington</td>
<td>5600</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>March 2009</td>
</tr>
<tr>
<td>25</td>
<td>Tennessee</td>
<td>850</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>December 2008</td>
</tr>
<tr>
<td>26</td>
<td>West Virginia</td>
<td>600</td>
<td>Ready to Ship</td>
<td>N2</td>
<td>TBD</td>
</tr>
<tr>
<td>27</td>
<td>Canada</td>
<td>850</td>
<td>Operating</td>
<td>CO2</td>
<td>June 2009</td>
</tr>
<tr>
<td>28</td>
<td>California</td>
<td>2300</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>July 2009</td>
</tr>
<tr>
<td>29</td>
<td>California</td>
<td>850</td>
<td>On Site for Start-up</td>
<td>N2</td>
<td>August 2009</td>
</tr>
<tr>
<td>30</td>
<td>Pennsylvania</td>
<td>5000</td>
<td>Operating</td>
<td>N2 & CO2</td>
<td>June 2009</td>
</tr>
<tr>
<td>31</td>
<td>Texas</td>
<td>1250</td>
<td>Design</td>
<td>CO2</td>
<td>January 2010</td>
</tr>
<tr>
<td>Ohio</td>
<td>< 100 SCFM</td>
<td></td>
<td>Operating</td>
<td>CO2</td>
<td>March 2009</td>
</tr>
</tbody>
</table>
Digester Gas Flow Balance – Single Step Processing

PRODUCT
Pressure as needed
CO2 = 1 to 2%
H2S = < 4 ppm
Siloxanes < 20 ppb
H2O = 7 lb/MM SCF

TAIL GAS
3 psig
CO2, H2S, H2O
Lost Hydrocarbons

FEED
CH4
CO2
H2S
Siloxanes
H2O

0 psig 100 psig

90 psig
Guild PSA And Vacuum Pump
Process Steps – Digester Gas

- Feed Compression
- Guild PSA and Vacuum Pump
- Tail Gas To Flare or Boilers
- Product
Digester Gas Upgrading Process Steps

Sales Gas
\[\text{CO}_2 = 1 \text{ to } 2\% \]

Small Methane Purge

Adsorption
Flow
Upward

CO2
H2S
Siloxanes
VOC’s
H2O
FEED

Regen
Flow
Downward

CO2
Siloxanes – VOC
H2S
H2O

Vacuum Pump
“Tail Gas”
<table>
<thead>
<tr>
<th></th>
<th>Feed</th>
<th>Sales Gas</th>
<th>Tail Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>100</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>Pressure, psig</td>
<td>100</td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>Temperature, F</td>
<td>100</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Composition, Mol %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>60.00</td>
<td>99.00</td>
<td>13.20</td>
</tr>
<tr>
<td>CO2</td>
<td>39.60</td>
<td>1.00</td>
<td>85.92</td>
</tr>
<tr>
<td>H2S</td>
<td>0.40</td>
<td>< 4 ppm</td>
<td>0.88</td>
</tr>
<tr>
<td>Siloxanes</td>
<td>~ 10 ppm</td>
<td>< 20 ppb</td>
<td>By Difference</td>
</tr>
<tr>
<td>H2O</td>
<td>Saturated</td>
<td>7 lb/MM SCF</td>
<td>Wet</td>
</tr>
<tr>
<td>HHV BTU/FT3</td>
<td>609</td>
<td>1000</td>
<td>139</td>
</tr>
</tbody>
</table>
Pipeline Acceptance

• Intrepid Technology and Resources, ID (Two units)
 – Extensive testing of product stream purity
 – Quality accepted by Intermountain Gas Company
 – Sales also accepted as CNG meeting DOT regulations
 – Removes 40% CO2 to <2%, Dehydrates, Removes 4000 ppm H2S to < 4 ppm.

• BioEnergy Solutions, CA (Vintage Dairy)
 – Sales to PG&E pipeline
 – Removes 30 to 40% CO2 to <1%, Dehydrates, A few hundred ppm H2S removed to < 4 ppm

• Newark WWTP (Ohio)
 – Producing pipeline quality gas
• H2S
 – May or may not require treatment.
 – Can treat on tail gas stream (preferred) or feed stream
 – Options:
 • No Treatment, Digester Additives, Biological Treatment, Sulfatreat / Iron Sponge, Liquid Redox

• Tail Gas Disposal
 – Enclosed thermal oxidizer if design for high methane recovery
 – Digester heating possible with combustion of tail gas.
 – Recovery of heat from compression or flare. Generally expensive and limited to larger flows

• Required Pipeline Pressure
 – High pressure requires additional compressor
Product Based Processing Costs, $/MCF
Includes = Feed compression, PSA, Flare, Pipeline Tap, Installation, Power (5 cents/kW), Maintenance, Man-Power
10 year project at 8% Loan

Feed Flow, SCFM

- 200: 4.00
- 350: 3.00
- 500: 2.50
- 1000: 2.00
- 1800: 1.50
Tidelands CO2 Removal System

1 MM SCFD
38% CO2
Removed to <2%
Start-up May 2002
Large Biogas Feed Compressor
Small Feed Compressor
Spec Plant in Transit
Spec Plant Installed
Large unit
Installed
Green Energy – Guild Molecular Gate Technology

Digester Gas Treatment for Energy Production / Pipeline Gas Production from WWTP Digester Gas

The Ohio Water Environment Association
2009 BioSolids Systems Workshop

December 10, 2009

Guild Associates, Inc