REMOVING ORTHOPHOSPHATE AND IMPROVING DEWATERABILITY OF DIGESTED SLUDGE BY POST-DIGESTION AIRPREX® PROCESS

OWEA Biosolids Workshop December 7, 2017

Josh Gable – Regional Sales Manager

Discussion Outline

- Quick History on CNP
- Phosphorus in WWTPs
- AirPrex Deep Dive
 - How it works
 - Review of data
 - Review of key benefits
- Bonus CalPrex Pre-digestion recovery
- Summary

History of CNP and AirPrex

Phosphorus Flows in WWTPs - For Plants with BNR

Phosphorus Acculating Organisms (PAOs)

P in Wastewater

Nuisance Struvite Formation

AirPrex® Sludge Optimization and P-Recovery

AirPrex

Where AirPrex Plugs In

So Why There?

- 1. Dewatering is always the problem area for nuisance struvite formation
 - Get it to form before dewatering and eliminate the issue
- 2. We want to mitigate sidestream phosphorus
- 3. Removing the soluble P upstream of dewatering improves the cake dryness and reduced the polymer requirement

Denver Metro, CO - RWHTF

Figure from Cavanaugh, L., K. Carson, C. Lynch, H. Phillips, J. Barnard, and J. McQuarrie (2012). "A Small Footprint Approach for Enhanced Biological Phosphorus: Removal: Results from a 95 MGD Full-Scale Demonstration," WEFTEC 2012 Proceedings (October 2012).

So Why There?

How it Works

How it Works

Notable Pilot Tests

			Plant Size MGD
Fond du Lac WWTP	Fond du Lac, Wisconsin	October 2015	4
Fox River Water Reclamation District	Elgin, Illinois	November 2015	25
Miami-Dade South District Plant	Miami, Florida	April 2016	128.5
Stevens Point WWTP	Stevens Point, Wisconsin	May 2016	3
RWH Treatment Facility at Metro WWRD	Denver, Colorado	June 2016	220
Sun Prairie WWTP	Sun Prairie, Wisconsin	October 2016	4
Tres Rios Water Reclamation Facility	Tucson, Arizona	January 2017	50
			-1
		AirPrex	
	S I	dge Optimi:	zation + P

- Improvement Cake Dryness
 2 to 5 percentage points
- Reduction in Polymer
 10 to 40 % reduction

Struvite sample collected during Airprex Pilot in Miami-Dade

Data Collected during Denver Metro Pilot Test, Summer 2016

➢ 90% Reduction of Sidestream OP

Struvite sample collected during Airprex Pilot in Miami-Dade

Data Collected during Sun Prairie, WI Pilot Test, Fall 2016

- 90% Reduction of Sidestream OP
- Subsequent Reduction in Digester TP

Struvite sample collected during Airprex Pilot in Miami-Dade

Data Collected during Sun Prairie, WI Pilot Test, Fall 2016

- Reduction in Digester influent Phosphorus as Observed at the SunPrairie, WI Pilot Test

Modeling completed by MWH based on Denver Metro Pilot

Suggests 30% Reduction in Digester TP Concentration when System Reaches Steady State.

Pilot Testing Summary

			After AirPrex				
			Plant Size MGD	Orthophosphate Reduction (%)	Dry Cake Solids Increase (%-points)	Polymer Reduction (%)	
Fond du Lac WWTP	Fond du Lac, Wisconsin	October 2015	4	>90	+2	-15	
Fox River Water Reclamation District	Elgin, Illinois	November 2015	25	>90	+2	-10	
Miami-Dade South District Plant	Miami, Florida	April 2016	128.5	>90	+4	-10 to -20	
Stevens Point WWTP	Stevens Point, Wisconsin	May 2016	3	>90	+5	-25 to -35	
RWH Treatment Facility at Metro WWRD	Denver, Colorado	June 2016	220	>90	+4 to 5	-15 to -25	
Sun Prairie WWTP	Sun Prairie, Wisconsin	October 2016	4	>90	+3	-10 to -25	
Tres Rios Water Reclamation Facility	Tucson, Arizona	January 2017	50	>90	+4	-30 to -50	

Example Installation

• Amsterdam, Netherlands – Installed 2014

AirPrex[®] - Amsterdam WWTP (Netherlands)

AirPrex® - Savings for Amsterdam

AirPrex Installations

Full Scale Installations	After AirPrex					
Wastewater Treatment Plant	Location	Year Built	Plant Size MGD	Orthophosphate Reduction (%)	Dry Cake Solids Increase (%-points)	Polymer Reduction (%)
Mönchengladbach-Neuwerk (Niersverband) WWTP	Mönchengladbach- Neuwerk , Germany	2009	80	>90	+3	-15
Berlin Wasserbetribe (BWB) WWTP	Berlin, Germany	2010	120	>90	+3 to 4	-20
Wieden-Echten (Reest & Wiedn) WWTP	Echten, Netherlands	2013	30	>90	+3	-15
Amsterdam-West (Waternet) WWTP	Amsterdam, Netherlands	2014	170	>90	+3	-25
ASG Salzgitter North WWTP	Salzgitter, Germany	2015	20	>90	+2	-15
Jing Nan Tianjin WWTP	Tianjin, China	2016	120	>90 Centrate Recovery		ecovery
Uelzen WWTP	Uelzen, Germany	2017	10	Pending Start-Up		
Wolfsburg Entwasserungsbetriebe (WEB) WWTP	Wolfsburg, Germany	2017	25	Pending Start-Up		
Liverpool WWTP	Medina, Ohio	2017 Start-up	9	Pending Start-Up		
Little Patuxent Water Reclamation Plant, Howard County	Savage, Maryland	2017 Start-up	29	Pending Start-Up		

As of June 2017 – Denver Metro Announced AirPrex Selected as Technology of Choice for their Nutrient Recovery Project

Key Benefits of AirPrex

- Reduction of OP recycle by > 90%
- Improved Dewatering
 - 3-5% point improvement in cake DS
 - Up to 40% reduction in polymer
- Low hanging fruit, easier to implement than pre-digestion recovery technologies.

CNP CalPrex for Pre-Digestion Recovery

What is Brushite?

Distinction of Phosphorus Minerals

Brushite is a higher value product Commercial value = \$250 - \$300 / ton versus \$75 - 100 / ton for Struvite

What is Brushite?

Distinction of Phosphorus Minerals

Brushite (dicalcium phosphate or dical) forms in slightly acidic conditions of pH 4.5 – 6.5 and is a good fertilizer. Ca²⁺ + H₂PO₄⁻ + 2H₂O $\leftarrow \rightarrow$ CaHPO₄·2H₂O + H⁺

Struvite (magnesium ammonium phosphate) forms in slightly alkaline conditions of around pH 8 and is a good fertilizer. NH₄⁺ + Mg²⁺ + HPO₄²⁻ + 6H₂O $\leftarrow \rightarrow$ NH₄MgPO₄·6H₂O + H⁺

Hydroxylapatite forms under alkaline conditions of pH 9 and is NOT a good fertilizer. $3Ca^{2+}+2HPO_4^{2-}+xH_2O \leftarrow \rightarrow Ca3(PO_4)\cdot 2xH_2O + 2H^+$

CNP CalPrex for Pre-Digestion Recovery

Why Acid Phase Digestion –

Soluble lons During Anaerobic Digestion

Phosphorus Recovery Potential

CNP CalPrex Pilot

CNP CalPrex Pilot

CNP CalPrex Pilot

Key Benefits of CalPrex

- Lower chemical cost for Ca(OH) 2 versus MgCl2
 - ~ \$0.06 per lb
 - Roughly 10-20% the cost of MgCl₂ on a per lb. of P-removed basis
- Where acid digester used
 - Can remove highest amount of TP of currently available technologies
- Brushite has higher commercial value than Struvite

Summary

- Implementation of AirPrex
 - Reduce sidestream OP by 90%
 - Reduce digester influent TP by estimated 30% at steady state
 - Improve Cake DS by 3 to 5 percentage point
 - Reduce polymer requirement by 10 to 40%
- Implementation of CalPrex
 - TP removal rates of over 50% possible as a separate stream
 - Key to success is good P-release, best achieved via acid phase digester
 - Produce higher value fertilizer
- Combined Solution
 - Maximize TP diversion and fertilizer production while maximizing solids dewaterability