Black River Wastewater Treatment Plant

Energy Challenges Within An Aging Plant

Alex Berki & Joseph Carbonaro City of Lorain, Ohio

Background

- Built as a Primary Treatment Facility in 1955 with a design flow of 10 MGD
- Upgraded to a Activated Sludge Secondary Treatment Facility in 1972 with a design flow of 15 MGD
- In 1979, a sludge incinerator was put out of service and the facility processes all sludge through a thickener, primary and secondary digester before land application or landfill
- Located on Lake Erie, downstream of the mouth of the Black River

Background

- Equipment has been maintained and repaired since 1972 with very little being fully replaced
- Five (5) 125 HP Hoffman Blowers are still used to supply air to four (4) aeration basins
- A two (2) meter belt filter press was installed in the early 2000s, allowing the BRWWTP to haul sludge as a Class B biosolid
- Since the 1970s, biogas from the digester is utilized to reduce natural gas consumption by powering heat exchangers, pre-aeration blower, and influent pumps

Energy Consumption at BRWWTP

Electric Energy Consumption By System Type

System	Annual kWh	Annual Cost	Percentage
Aeration & Clarification	740,873	\$56,822	28%
Digestion	517,204	\$39,668	19%
Final Treatment & Discharge	258,580	\$19,832	10%
Sludge Handling	206,429	\$15,832	8%
Raw Water Handling	175,106	\$13,430	7%
Lighting	139,635	\$10,710	5%
HVAC	99,186	\$7,607	4%
Other	518,886	\$39,797	20%
Totals	2,655,899	\$203,698	100%

* Information from July 2015 Graphet Report titled, "ODSA Energy Efficiency Program for Manufacturers"

Energy Consumption at BRWWTP

ELECTRICAL ENERGY CONSUMPTION BREAKDOWN BY SYSTEM TYPE

Energy Consumption at BRWWTP

ENERGY CONSUMPTION BY EQUIPMENT TYPE

Energy Challenges

- WWTP no longer being thought of as "mothballed"
- Halt "old mentality" of minimal repair and replacement
- Use energy efficient repairs and replacement parts
- Determine sound "order of succession" to bring WWTP up-to-date with necessary repairs
- Understand the costs associated with undertaking certain projects as direction may change unexpectedly
- Minimize compromising the quality of effluent when making energy decisions

- Upgrade existing lighting systems to more energy efficient equipment
- Proper adjustment of aeration basin blowers to achieve maximum energy efficiency AND effluent quality
- Make energy conscience operational adjustments
- Replace motors and equipment with NEMA premium efficiency equipment during next replacement cycle keeping cost in mind
- Consider properly sized equipment to increase efficiency (i.e. digester mixer pumps)

Identify "Low Hanging Fruit"

Energy Management Plans

 Plans generated from list of Energy Conservation Measures (ECMs) provided/recommended by Graphet:

- Replace throttling valves on aeration basin blowers with VFDs
- Reduce air flow to aeration basins to target DO of 3.0 mg/L, thus reducing air flow by 10-50%
- Purchase and install properly sized mixer pump for digestion tank with NEMA premium motors
- Purchase LED lighting fixtures to replace current fluorescent lighting system
- Operate three aeration basins in parallel to achieve required flow (post-VFD)

Turning Plans into Action

SIMPLE

- Upgrade the current lighting system to LEDs
 - Straightforward
 - Obtained three quotes for complete upgrade (i.e. housings, bulbs)
 - Installation and maintenance will be handled "in-house" which will aid in cutting cost and see larger ROI
 - Project anticipated to be completed by end of 2016
 - Anticipated ROI in 1 year

COMPLICATED

- Replace throttling valves on aeration blowers with VFDs
 - Not so straightforward
 - Laundry list of upgrades needed before VFDs can even be purchased for project
 - Most work will be handled and completed "in-house" to save on costs of equipment and labor
 - Uncertain of ROI and timeframe, depends on complexity of project

Turning Plans into Action

- Before VFDs can even be purchased, a number of upgrades must be completed;
 - Replace Magnetic flow meters on Return Sludge Line to monitor flow
 - Purchase and install Insertion Magnetic flow meters on settled sewage line entering aeration basins
 - Repair/Replace pressure valve to regulate air flow from blowers to aeration basins
 - All this done to know flows being sent to aeration basins so proper operation of VFDs can be established

Unexpected Issues

- While attempting to shut off flow through line, it became obvious that the Plug Valves were not fully closing, approximately 2000 gpd still flowing through line
- The valves in place were the original mechanisms installed in 1972
- This is where <u>Asset Management</u> is <u>IMPORTANT</u>

Lessons Learned

- Budgeted project of replacing Mag meters and installing VFDs no longer to take place
- Amount set aside to be completely used for purchase and replacement of all Plug Valves
- Proper maintenance could have avoided larger time intensive project of full updating of valves and meters

- Money spent on new valves could have been used toward updating of digestion tank mixer
- Project to enhance energy efficiency of digester pushed back further due to increased current project needs
- Despite planning (i.e. 5-Yr Plans & Budgetary Plans) unexpected discoveries can derail important energy projects

Efficiency

Vs.

Sustainability

- Operate Aeration Tanks to meet top effluent quality, minimum Ammonia concentration.
- Adjust air to maintain DO in Aeration Tanks and meet best effluent quality.
 - BRWWTP aims to maintain DO concentration of 3.0 mg/L.

- Operate Aeration Tanks to meet minimum effluent quality levels and operate at a maximum Ammonia concentration below the given limit.
- Adjust air to Aeration Tanks to operate blowers at maximum efficiency, using least amount of energy (i.e. electricity)
 - Installation of VFDs

訇