

Value per dry ton of residuals

SOURCE: Environmental Science & Technology

What is hot in biosolids processing?

Mohammad Abu-Orf, PhD, Residuals Group Practice Leader

Outline

- Overview of drivers for biosolids processing and trends
- Resource recovery
- Anaerobic Digestion Advances (THP, Pondus, Lystek)
- Dewatering (Bucher press, Dewatering/BioP, SLG-Orege)
- Thermal processing (Gasification, SCWO, Pyrolysis/biochar)
- Closing remarks

Overview of drivers and trends

Drivers for management of biosolids

- Main driver for managing continues to be federal and state regulations – usually stricter
- Public perception: increased scrutiny on all disposal/reuse routs
- Availability of disposal or reuse outlets
- Energy demand for management
- Cost of processing from production to end use and capital funding
- Paradigm shift, resource and not a waste

Processing and management <u>trends</u> in response to drivers

- Energy driven technologies:
 - Enhanced/advanced anaerobic digestion
 - Co-digestion of high strength waste SSO, FOG, Whey, etc.
 - Increased beneficial use of biogas
 - Energy recovery from dried products through gasification/pyrolysis
 - Energy recovery from incineration

Processing and management <u>trends</u> in response to drivers

- High quality product technologies:
 - Sludge screens and finer influent screens
 - Thermal Hydrolysis prior to anaerobic digestion
- Side stream treatment technologies and nutrient recovery
- Metal recovery from biosolids
- Alternatives project delivery methods in response to high capital costs: DB, DBOOF, PPP

Resource recovery

Water Resource Recovery Facilities NOT Wastewater Treatment Facilities

The Resource Management Paradigm for Utilities of the Future

Are we recovering the proper resources?

- Energy:
 - net zero energy facilities,
 - integrated waste management approach
- Nutrients:

Hazen

- marketable biosolids endproducts,
- increased value of soil amendments and fertilizers
- struvite recovery
- Metal (Rare Earth Elements) recovery

SOURCE: Environmental Science & Technology

Value per dry ton of residuals

1. Energy recovery opportunities from sludges

Food waste is 14 % of country's total waste (2010) Less than 3% of food waste recovered America wastes enough food to fill the Rose Bowl daily!

Food waste decomposes in landfills: produces leachate, methane

Europe Converts SSO to Renewable Energy North America is Catching Up

Combine with Water Resource Recovery Facilities

Why Water Resource Recovery Facilities

- Infrastructure already in place
- ~15-30% excess digestion capacity nationwide
- Energy demand on the rise
- Located in populated areas: proximity to waste streams
- Still, need to be economically viable!

Economic balance is important to the practice

Struvite: from nuisance to resource recovery

Example technologies to recover struvite (PAM)

Pearl®

AirPrex®

Multiform™

- Recovery can be practiced from
 - Digested biosolids: positive impact on dewatering
 - Centrate/filtrate

Rare Earth Elements

REUTERS: Nearly 2 kilograms of gold in every metric ton of ash left from burning sludge

ES&T (2015): There's as much as \$13 million worth of metals in the sludge produced every year by a million-person city - ~2.6M is Gold and Silver

Metal recovery (Rare Earth Elements, REE)

- Free ion concentrations are low
- Readily form complexes with CO₃⁻² and PO₄⁻³
- Complexation with organic compounds
- Adsorption onto sediments and biological material

How do REEs in wastewater behave in WRRFs?

Is there economic incentive to recover and reuse REEs present at WRRFs?

Hazen

Value drives recovery potential

Commodity Price (\$/lb)
\$242/lb ⁽⁴⁾
\$0.91/lb ⁽⁴⁾
\$17,700/lb ⁽⁴⁾
\$0.91/lb ⁽⁵⁾
\$5/lb ⁽⁵⁾
\$2.72/lb ⁽⁴⁾
\$0.05/lb ⁽⁴⁾
\$165/lb ⁽⁵⁾
\$8,475/lb ⁽⁴⁾
\$0.91/lb ⁽⁴⁾
\$7.75/lb ⁽⁴⁾
\$6.35/lb ⁽⁴⁾
\$11,350/lb ⁽⁴⁾
\$2.75/lb ⁽⁴⁾
\$0.91/lb ⁽⁴⁾

North American REE Sampling Campaign (WE&RF)

Goal – A better understanding of the abundance of REE entering North American WRRFs, and a preliminary look at speciation through selected WRRFs with significant REE input

28 Participating WRRFs

- 2MGD hundreds of MGD
- Influents ranging from residential to heavily industrial

Sampling Regime

- Influent, Secondary Effluent, and Biosolids Samples
- Influents to be analyzed first to identify facilities with highest occurrences

Anaerobic digestion

advances

Thermal Hydrolysis Pondus Lystek

Desired performance from anaerobic digestion

- 1. Class A biosolids: sustainability and reuse cost
- 2. Less digestion volume: footprint, cost (water content of the feed sludge)
- 3. High digestibility, more volatile solids reduction: more gas, more energy
- 4. Good dewaterability after digestion: less hauling and cost
- **5. Minimize FC reactivation/regrowth potential and odors:** sustainability for land application
- 6. High digester loading rate: more throughput, less digestion volume, cost
- 7. Good mixing efficiency, less energy input: Better Digestion, more VSR, more energy recovery and

Pre-treatment technologies to conventional digestion (ultrasonic, shear, etc.) Acid/Gas Digestion Temperature Phase Anaerobic Digestion Staged Thermophilic Anaerobic Digestion Thermal Hydrolysis prior to anaerobic digestion

Thermal Hydrolysis – Advanced Anaerobic Digestion Pretreatment Process

Thermal Hydrolysis Process (THP)

Process

- Treats dewatered sludge (from 14 to 17%) prior to anaerobic digestion, under the following conditions:
 - High temperature of
 150 170°C (300 340°F)
 - Under pressure of 6 to 9 bars (90 130 psi)
 - Reaction time 22 to 30 min
- Dewatered sludge Input to digestion 8 to 11%

Result

- Decrease viscosity
 - Allows sludge mixing at higher concentration
 - Decrease digestion volume
- Sterilized sludge (Class A)
- Improves anaerobic digestion
 - Increase VS reduction
 - Improve biogas production
 - Reduce mass for further processing
- Improve final dewatering

Thermal hydrolysis achieves ALL desired requirements from anaerobic digestion

- Pasteurized solids, Class A
- Digester is fed at 8-12% total solids, half the volume
- Volatile solids destruction is high 55-65%
- Dewatered cake ~30%
- Proven to not have problem with FC reactivation/regrowth, better odor quality
- 50% more solids loading compared to conventional digestion
- Power required to mix digester is less

Thermal hydrolysis technology providers

Cambi > 50 facilities

Sustec: 2 facilities

Veolia ~ 12 facilities

Haarslev: 2 facilities

THP may be coming to a utility near you in the near future...

Thermal Hydrolysis – "no free lunch"

More complex than standard digestion, steam with high pressure and temp

–Will need to train staff on pressure and steam systems

- Greater performance at higher dry solids means more ammonia
 - -Centrate/filtrate need to be treated
- Needs energy (steam)

-Energy demand dependent on dry solids input and temperature of recycle

• Production of refractory compounds

-Color, refractory COD greater at higher temperatures

• Need to dump heat

Each facility needs own evaluation

Facility	Feasibility study	Status
Blue Plains DC Water	✓ 2008	Operating 2014, DB
CRWS (TRA)	✓ 2011	Under construction, DB
Piscataway (WSSC)	✓ 2012	In planning, DB
Honouliuli CCH	✓ 2013	Not recommended
Central District Miami	✓ 2014	Not recommended

Avoiding construction of new digesters and reduced biosolids for beneficial use are NOT outweighed by pre-dewatering, THP cost and beneficial use costs

Thermo-Chemical Hydrolysis Pondus, CNP – Technology

- Applied only to thickened WAS
- TWAS is heated to 65-70 (150-160)
- Caustic soda (50% concentration) added to TWAS: 1.5-2.0 liter per 1 m3
 pH ~11
- Detention time: circulation through reactor and HEX 2.0-2.5 hrs
- Hydrolysis increased COD to ~ 170%, brings down the pH to 6.8-7.0
- Decreased viscosity, enhanced mixing
- Increased digester solids loading rate

First USA installation, Kenosha Water Utilities ~22 MGD

Thermo-Chemical Hydrolysis: Lystek

- Applied to dewatered solids/biosolids
 - Low pressure steam (165oF)
 - High shear mixer
 - Alkaline addition 9.5-10 pH
- Class A EQ, ~15% flow-able product
- 6 facilities in Canada
- First facility in USA: Fairfield Suisun Water District (October 2016 as part of the BAB2E)
- On-site, off-site
- DB, DBT, DBOOF

Advances in dewatering

Bucker Press SLG, Orege BioP impacts

Bucher Press, Suez

- Technology from fruit pressing industry
- High capital
- ~ cake solids by up to 5 pts
- In UK recently practiced on THP, ~ 40% DS
- 15 to 18 kg/TDS polymer
- serious consideration when hauling and use tipping fees are high

SLG Process, Orege France

- Adds pressurized air to the sludge line in vessel prior to polymer addition
- Proposed theory on conditioning mechanism:
 - Air bubbles get enmeshed in the sludge floc
 - Less dense flocs
 - Under compression, air bubbles collapse leaving behind passages/cracks that allow water to be easily squeezed out
 - Technology is expected to work better for BFP type technologies as compared to centrifuges

First USA installation: Lehigh County WWTP, PA

- 7 MGD, Anaerobic digestion
- 3 BFP

- Demonstrate to purchase
 agreement
- Side by side
- ~2 yrs payback
- Demonstration at Welsh Water and University of South Wales

	Control BFP	SLG/BFP	Improvement
Cake Dryness	15%	18-18.5%	20-30%
Polymer Usage (lb/dt)	60	45	25%
% solids recovery	98%	≥ 98%	Same or better

BioP and dewatering impacts

Hazen

(Kopp, 2016)

Recover dewaterability by removal of PO4 AirPrex Piloting at SDWWTP, Miami Dade, March 2016

- Precipitation and/or recovery of struvite from biosolids enhanced dewatering performance
- Working with Metro Water Reclamation District to further understand and pilot
- WE&RF research project (Matt Higgins, Bucknell) is looking to shed more light

Advances in thermal

processing

- Gasification
- Pyrolysis/biochar
- Super Critical Water Oxidation

Thermal processes

	Combustion	Gasification	Pyrolysis		
Temperature (F)	1,650 - 2,000	1,100-1,800	390 - 1,100		
O ₂ Supplied	<pre>> Stoichiometric (Excess Air)</pre>	< Stoichiometric (Limited Air)	None		
Products	Flue Gas (CO ₂ , H ₂ O) & ash	Syngas (CO, H ₂) & ash	PyroGas, Oils, Tars & Char		
Close-coupled gasification					

Net energy vs. solids type and concentration

City of Covington, TN

- Small facility 1 MGD plant
- Started October, 2013
- 80:20 wood to biosolids, wood ~1 inch
- PHG operating now, 5 days/wk, 10 hrs day
- 120 kW energy, more than average (100kW)

Lebanon, TN Facility

- 5 MGD WWTF
- Started October 2016, finished end of 2016
- 32 tons per day: 3 tons sludge, 3 tons tires, 26 tons wood waste
- Generate 420 kW, ~ 60% of average use
- \$100k/yr cash flow

Delta Diablo, BAB2E program

- In planning phase
- ~ \$10 M project, 25% of Delta Diablo biosolids, 467 KW
- 1 truck/day yard waste + 2480 wet tons/yr biosolids @ 25%TS
- 60% from anaerobic digestion + 40% gasification off the grid!

Biodry and Pyrolysis (BIOFORCETECH)

Silicon Valley Clean Water Demonstration BAB2E Program

- Under construction
- ~\$10 M project
- 6 biodryers and one pyrolysis unit
- 8,000 tons biosolids/yr
- Pyrogas and bio-oil burned for energy, supplement bio-drying
- ~700 tons/yr biochar

Innovations could reduce the process from a multi-step system...

...to a single step process

Supercritical Water Oxidation – SCFI Group

USA demonstration sites

- BAB2E Program
 - Dublin San Ramon Services District SCFI/Synagro
 - West County Wastewater District SCFI/Synagro
- Orange County Sanitation District, CA

Closing remarks

- Processing and managing residuals will remain a challenge: no single or standard solution.
- Drivers will focus on preserving the earth resources and sustainable practice require adapting to these pressures and drivers.
- Economic sustainability and resource scarcity will dictate the resources we need to recover from residuals
- Expect to see a place in the future for most existing technologies with gradual shift to more untraditional technologies such as gasification/pyrolysis, SCWO and HTML

Questions?

