

Excellence in Engineering Since 1946

OWEA Technical Conference & Expo June 29, 2017

A Look Forward - How to Handle Low Level Phosphorus Limits with Creative Solutions

Jamie Mills, O.I.T.

Strand Associates, Inc.®

The content of this presentation is not to be downloaded, copied, used, or otherwise transmitted without the prior consent of Strand Associates, Inc. [®]

Presentation Outline

- General Background and Senate Bill 1
- Traditional Methods for Phosphorus (P) Removal
 - Chemical Phosphorus Removal (CPR)
 - Biological Phosphorus Removal (BPR)
- Impacts of Phosphorus Removal on O&M
- Trading Programs and Agricultural Management
- Evaluation of Collection System and Pre-Treatment Options

Presentation Outline

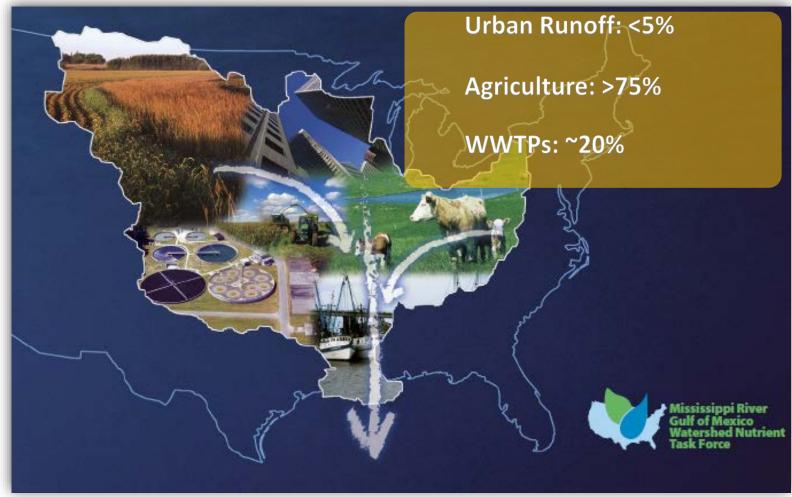
General Background and Senate Bill 1

- Traditional Methods for Phosphorus (P) Removal
 - Chemical Phosphorus Removal (CPR)
 - Biological Phosphorus Removal (BPR)
- Impacts of Phosphorus Removal on O&M
- Trading Programs and Agricultural Management
- Evaluation of Collection System and Pre-Treatment Options

What is Phosphorus and Why is it a Concern?

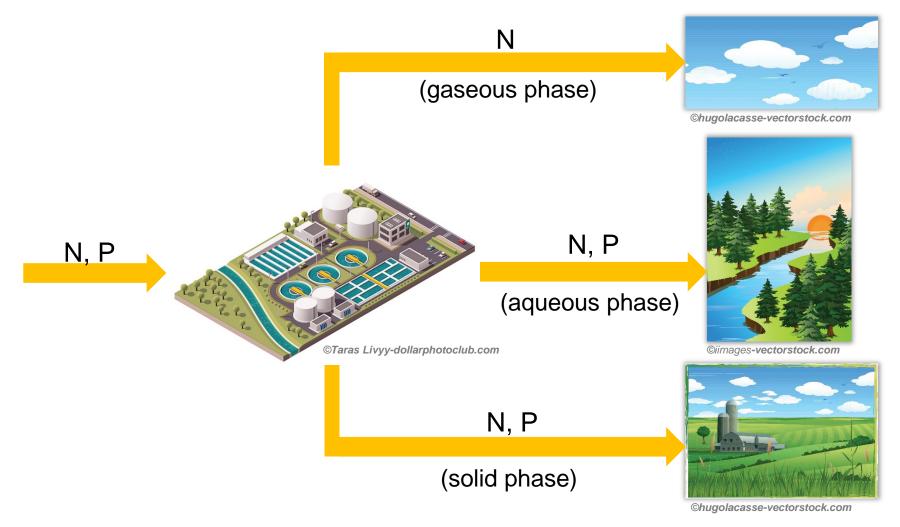
With permission of: WDNR

Typical Forms of P:


- Orthophosphate
- Organically bound P
- Polyphosphates

Can Cause:

- Algae
- Low dissolved oxygen
- Aquatic life impacts
- Loss of tourism, property values


Where Do Nutrients Come From?

With permission of: USEPA. Example: Rock River Basin, WI

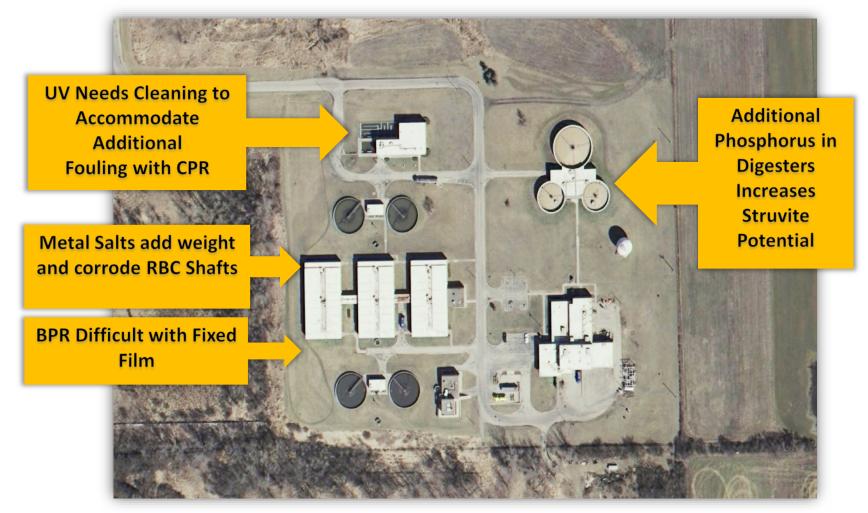
How Do We Remove Nutrients from Our Wastewater?

Senate Bill 1 - Ohio's Current Approach at P Limits

- By December 1, 2016, all POTWs with a design flow of 1.0 MGD or more or those otherwise designated as a major discharger by the Director were required to start monthly orthophosphate monitoring.
- POTWs with a design flow of 1.0 MGD or greater or designated as a major discharger that do not have a phosphorus limit are required to submit a study by December 1, 2017 that evaluates the technical and financial capability of the POTWs to reduce the final effluent discharge of phosphorus to 1.0 mg/L.

Presentation Outline

- General Background and Senate Bill 1
- Traditional Methods for Phosphorus (P) Removal
 - Chemical Phosphorus Removal (CPR)
 - Biological Phosphorus Removal (BPR)
- Impacts of Phosphorus Removal on O&M
- Trading Programs and Agricultural Management
- Evaluation of Collection System and Pre-Treatment Options

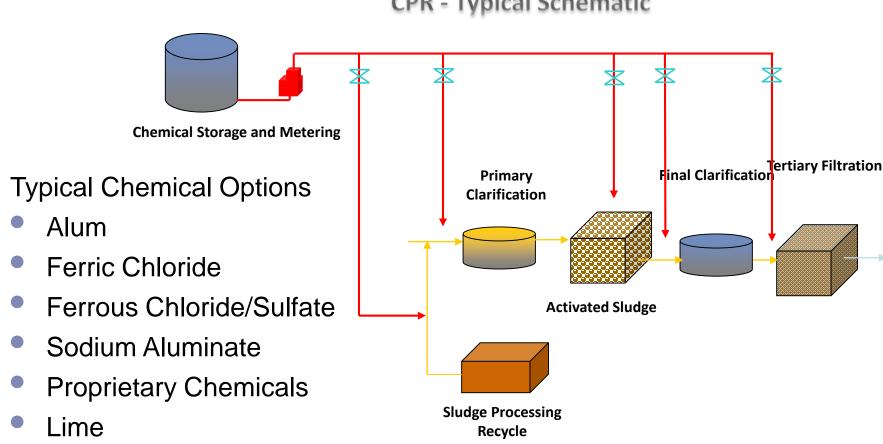


Proper Design Identifies Facility Obstacles and Opportunities

Proper Design Identifies Facility Obstacles and Opportunities

Chemical P Removal (CPR) - Principles

CPR


- Add lime, iron, or aluminum salt, rare earth
- Precipitation of soluble P
- Precipitated P removed during clarification, filtration

CPR – General Configurations

CPR - Typical Schematic

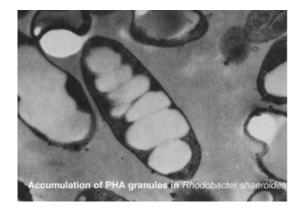
Testing for CPR

- Jar Testing of Chemicals
 - Determine Dose Rates
 - Determine Side Effects
 - pH Depression
 - Alkalinity Loss
- Pilot Testing

Presentation Outline

General Background and Senate Bill 1

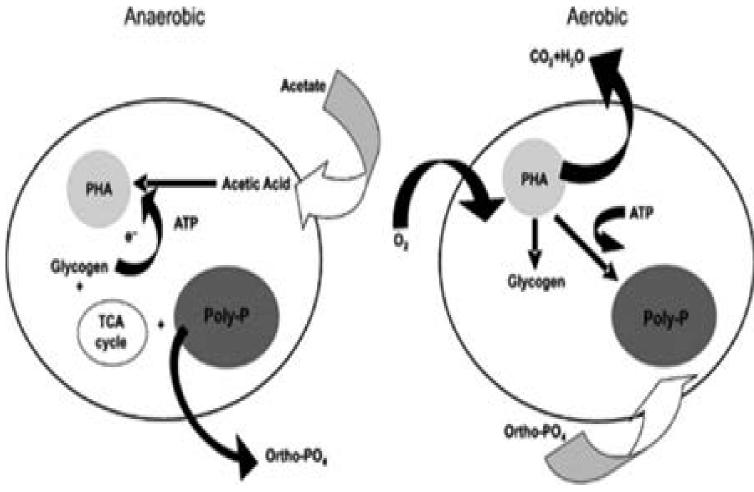
Traditional Methods for Phosphorus (P) Removal


- Chemical Phosphorus Removal (CPR)
- Biological Phosphorus Removal (BPR)
- Impacts of Phosphorus Removal on O&M
- Trading Programs and Agricultural Management
- Evaluation of Collection System and Pre-Treatment Options

Biological P Removal (BPR) - Principles

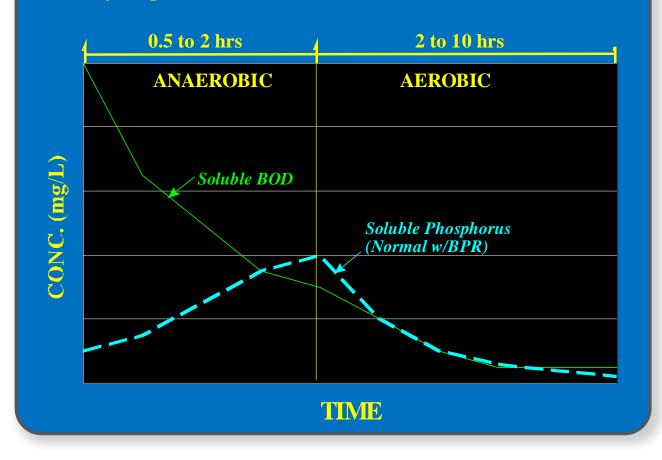
BPR

- Selects for growth of PAOs strict anaerobic conditions
- More complex/higher risk
- PAOs removed during clarification, filtration



With Permission of: Malithi Weerakkody

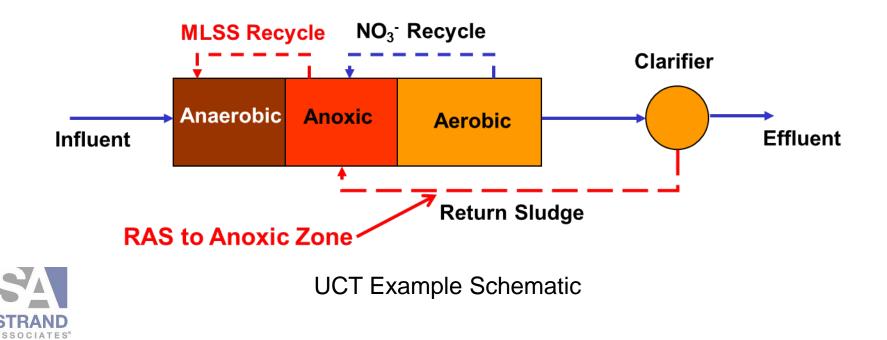
BPR - Principles



With permission of: Seviour et al. 2003

BPR - Principles

Phosphorus cycle involves release in anaerobic zone, "luxury" uptake in aerobic zone


Where is BPR a Good Candidate?

- Where does BPR tend **TO** work?
 - Plants with long sewers/force mains
 - High strength wastewater
 - Large industrial flows with high soluble BOD
- Where does BPR tend **NOT** to work?
 - Plants with low strength wastewater
 - Fermentation step or soluble BOD may need to be added
 - Attached growth plants
 - Trickling filters/Rotating Biological Contactors (RBCs)

BPR - Process Configurations

- **-** AO
- A2/O
- Bardenpho
- University of Cape Town (UCT) process
- Johannesburg (JHB)
- Many process variables & decisions

Summary

- CPR and BPR can meet 1 mg/L when implemented properly
- Important to understand pros and cons of each process before making decision

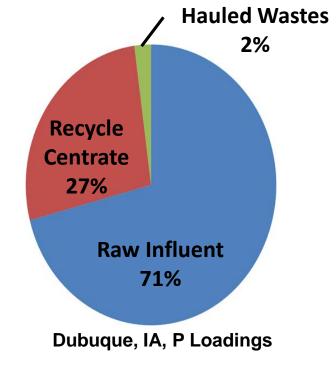
Factor	CPR	BPR
Capital Costs	Lower	Higher
Operation	Easier?	More Difficult?
Maintenance	Higher Cost	Lower Cost
Reliability	Higher	Lower
Sludge Costs	Higher	Lower
Lower Limits	May Meet/Filtration	Add CPR/Filtration

Presentation Outline

- General Background and Senate Bill 1
- Traditional Methods for Phosphorus (P) Removal
 - Chemical Phosphorus Removal (CPR)
 - Biological Phosphorus Removal (BPR)

Impacts of Phosphorus Removal on O&M

- Trading Programs and Agricultural Management
- Evaluation of Collection System and Pre-Treatment Options



Considerations for Side Stream Loads

Solids Handling

Thickening, dewatering, decanting, and other similar activities will return P to the system.

- Analyze any significant side stream often enough to know the N, P, and organic loadings that are associated.
- Plan these activities for times when capacity is available and do so in moderation.
- Increase doses or initiate CPR systems, if necessary.

CPR – Operational Considerations and Red Flags

- Increased Effluent Suspended Solids
 - Floc/settleability issues
 - Wet weather flows resulting in solids wash out
- Gradual Increase in Chemical Consumption
 - Chemical aging/deterioration
 - New load of chemical
 - Change in influent strength
 - Change in sidestream loads
- Aeration Basin pH Reduction
 - High chemical salt addition
- Solids Handling Limitations
 - 20 to 50% more solids
 - Impacts to pumping, thickening, dewatering, digestion, and storage

BPR – Operational Considerations and Red Flags

- Increased Effluent Suspended Solids
 - Floc/settleability issues
 - Wet weather flows resulting in solids wash out
- Potential Wet Weather Impacts
 - Diluted food supply may limit efficiency
 - High flow may reduce detention times
 - Lower loads may allow increased DO in recycles to anaerobic and anoxic zones
- Sidestream Loadings
 - Process decisions that could introduce additional P loadings (anaerobic environments)
- Solids Handling
 - Impacts to sludge dewaterability
- Struvite Formation (anaerobic environments)

Trouble Shooting and Adjustment of Activated Sludge Controls Improved BPR at Dodgeville, WI

Courtesy of: Strand Associates, Inc.®

Trouble Shooting; Adjustment of AS Controls – Dodgeville, WI

Impact of Operational Adjustments on Effluent Phosphorus Levels

Date	RAS Monthly Avg. (mgd)	MLSS Monthly Avg. (mg/L)	D.O Daily Range (mg/L).	Effluent P Monthly Avg. (mg/L)
October 2000	0.556	3718	0.5 to 5	3.67
March 2002	0.175	3177	0.5 to 0.9	0.33

- Adjustments Included
 - Lowering of Sludge Age
 - Addition of Dissolved Aeration Control
 - Automation and Reduction of RAS Rates
 - Experimentation with Zone Options
 - Bleeding Carbon to RAS Denitrification Zones

Presentation Outline

- General Background and Senate Bill 1
- Traditional Methods for Phosphorus (P) Removal
 - Chemical Phosphorus Removal (CPR)
 - Biological Phosphorus Removal (BPR)
- Impacts of Phosphorus Removal on O&M
- Trading Programs and Agricultural Management
- Evaluation of Collection System and Pre-Treatment Options

Nutrient and Water Quality Trading

- Nutrient and Water Quality Trading have emerged as a promising strategy for reducing pollutant loading to receiving waters
- Provides the ability to purchase load reductions from other facilities or sources that are safely meeting below their requirement – can purchase the difference in loading as credit and spend the money to help make sure that the other facility is safely meeting under limit
- Requirements
 - 1. Trading must be cheaper than implementing pollution control equipment
 - 2. Nutrient trading must be concrete and certain

With Permission of: Cameron Davidson / Getty

Nutrient and Water Quality Trading

- Is it really cheaper?
 - Minimum trade ratio is 1:1
 - Low hanging fruit incentives for initiative and water shed improvements

Urban Stormwater

- Urban Wetland
- Rain Gardens
- Dry Detention Ponds
- Bioswales
- Detention Basins

With Permission of: Metrolina Landscape

As long as deep enough – can capture nutrient urban runoff

With Permission of: NUCFAC & Davey Resource Group

Agricultural BMPs

- Agricutural BMPS
 - Filter/buffer strips (10 year design life)
 - vegetated waterways, wetlands, cover crops
- Agricultural Area Considerations
 - Soil type, slope/grade/hydraulics, tile drainage, crop type and growth/harvest season
 - Crop yield and fertilizer application

With Permission of: WallacesFarmer

With Permission of: land Stewardship Project

Agricultural BMPs

- Conservation Reserve Enhancement Program (CREP)
 - Voluntary program to introduce farmers and agricultural land owners to conservation practices.
 - There are federal and state incentives as well annual payments to owners
 - Typically 15 year compliance programs

Presentation Outline

- General Background and Senate Bill 1
- Traditional Methods for Phosphorus (P) Removal
 - Chemical Phosphorus Removal (CPR)
 - Biological Phosphorus Removal (BPR)
- Impacts of Phosphorus Removal on O&M
- Trading Programs and Agricultural Management
- Evaluation of Collection System and Pre-Treatment Options

Collection System and Pre-Treatment Options

- Goals:
 - Reduce as much of the phosphorus discharged as possible through *slight* operational changes to the facility
- Source Reduction = Reduced Operating Costs
 - Reduce influent phosphorus upstream modifications
- Chemical Substitution (e.g. phosphoric acid)
 - Can be employed at industrial sites can significantly reduce phosphorus concentrations.

Source Identification – What is P coming from?

All users – cleaners, sanitizers

Industrial users

- Food/beverage processing moisture, flavor, color, firmness, pH
- Dairies emulsifiers, stabilizers
- Metal finishing degrease, shiny surface
- Meat packing maintain shelf life, meat juiciness
- Personal care products dental-related

Source Identification – What is P coming from?

Commercial & Institutional	Municipal	Domestic
Ag co-ops – fertilizers	WWTP operations – CPR, sidestreams	Education
Restaurants	Hauled in waste - septage	
Hospitals, nursing homes	Water supply – polyphosphates, raw water	
Schools	Satellite communities	
Car washes		

Source Reduction Examples

- Cleaning and sanitizing chemicals (Phosphoric acid, TSP)
 - **Substitute** (work w/chemical suppliers):
 - Low-P or non-P cleaners
 - CIP system
 - College campus
 - Surveyed use dining, housekeeping, laundry, heating/cooling plant
 - 10 chemicals identified, 5 replaced with non-P chemicals
 - Reduced P by 220 lb/yr

Frozen Food Company

- Changed to low-P cleaners
- Reduced effluent P from 36 lb/d to 13 lb/d
- Creamery
 - Level sensors in tanks
 - CIP system
 - Reduced effluent P from 150 lb/d to 90 lb/d

Source Reduction Examples

Dalton Utilities

Influent P doubled - ??

- System monitoring
- 6 of 28 users, 70% of P
- 4 of 6 were carpet manufacturers

Carpet companies as a source

- Phosphoric acid used a buffer for carpet dyeing
- Regulation change resulted in increased use of P acid
- Chemical substitution

Result: P load reduced by 50%

Questions?

Jamie Mills, O.I.T. Strand Associates, Inc.[®] <u>614-835-0460</u> Jamie.Mills@strand.com

Excellence in Engineering Since 1946