Agenda

- A primer on renewable energy
 - What it is and what it isn’t
 - What makes sense and where
- The “perfect storm” scenario
- Review the results of a feasibility study of this technology
Why Renewable Energy?

- Renewable Portfolio Standards may be a market driver
- Some renewable energy sources are sustainable, meaning you can keep on doing it indefinitely, without subsidies
- Many renewable energy projects are not economically viable without inducements
- Part I of the “perfect storm”
Renewable Portfolio Standards

- Legislated by more than ½ of the states
 - As such, each is different
 - May soon be federally mandated
- Each mandates that by some date, some % of the electrical energy sold in the state comes from renewable sources
 - In Ohio, 12.5% renewable by 2025
- That means 2,900 MW of new renewable generation in Ohio alone
Renewable Energy Certificates (REC)

- The preferred means of tracking compliance with RPS
- Each certificate represents 1,000 kWh of electrical energy from renewable sources
- RECs have a market value and may be traded “unbundled”
- Generally, RECs can be generated in states that do not have a RPS and sold into markets that do
Renewable Energy’s Contribution

- Approximately 9% of electricity currently generated in U.S. comes from renewable sources
Renewables are extremely sensitive to geography
What is Biomass?

- Renewable organic matter within the biosphere
- Biomass waste streams
 - Wood waste
 - Agricultural waste
 - Landfill gas
 - Digester gas
 - Undigested sewage sludge (biosolids)
- Focus on inconvenient waste streams
 - Negative commercial value
 - Disposal problem
- Our focus... **Biosolids**
Why No Respect?

- Constant, predictable source
 - Essence of regularity at .25 dry pound/person/day
- Uses mature technologies
- Larger population centers have:
 - Abundant fuel available
 - Robust electrical infrastructure
Part II of the “Perfect Storm”

- OAC 3745-40 is a draft rule making its way through the rule making process
- More stringent regulation of biosolids disposal
 - Increased recordkeeping
 - Increased treatment to stabilize
 - Increased winter storage
- Will effectively increase disposal costs
Sludge disposal

- What started as an energy solution became, primarily, a disposal solution
- Other sludge disposal technologies are becoming more unattractive
 - Land application is coming under more stringent regulatory pressure.
 - Landfilling is viewed as environmentally unfriendly and tipping fees are expected to rise.
 - Incineration will become a financial burden as energy prices rise.
 - Composting is resource intensive and results in a negative cash flow
- Important to consider total cost of disposal
Case Study
Wastewater Utility

- Longstanding client
- Environmentally responsible
- Forward thinking
- Utility serves a population of 250,000
- Generates 120 wet tons of sludge/day
- Landfills their sludge

Disposal cost
- Transportation $5.23/ton
- Tipping fee $19.60/ton
Study Process

- Characterize waste streams
 - Is the sludge fuel?
- Develop alternatives
- Develop project costs
- Quantify savings
- Prepare net present worth analysis
Characterize Waste Streams

- With respect to:
 - Proximate and ultimate analysis
 - Flow

- **Plant #1 biosolids**
 - \(~8,100\) BTU/lb (dry)
 - 32% solids
 - 112 tpd

- **Plant #2 biosolids**
 - \(~6,250\) BTU/lb (dry)
 - 15% solids
 - 10 tpd
Gasification Process

- Sludge must be dried
- Subject the dried sludge to a high temp., oxygen deficient environment
- Products
 - Fuel gas
 - Sand-like ash
- Fuel gas
 - Primarily carbon monoxide and hydrogen
 - Can be combusted like natural gas
- Mature technology (>100 years)
Bubbling Fluidized Bed Process

- Further drying not required
- Sludge can be combusted directly in a Bubbling Fluidized Bed (BFB) boiler to generate steam
- Use steam:
 - To generate electricity in a condensing steam turbine generator set
 - Directly for process loads
- Mature technology (>50 years)
Fast Pyrolysis

- Takes place in high temperature (500°C), oxygen \textit{free} environment
- Yields “bio oil” and char
- Bio oil has 54% of the energy content of #2 fuel oil and can be used similarly to #2
- Different from petroleum based oil
- Pyrolysis equipment supplied in modules
Process Alternatives and Metrics

- Two (2) pyrolysis modules with one IC generator
 - Initial cost: $6,580,000
 - Time to NPV breakeven: 3.5 years
 - NPV @ 20 year horizon: $11,540,000

- Bubbling fluid bed boiler and steam turbine genset
 - Initial cost: $11,050,000
 - Time to NPV breakeven: 6.0 years
 - NPV @ 20 year horizon: $9,170,000

- One (1) pyrolysis module with bio oil sale
 - Initial cost: $2,900,000
 - Time to NPV breakeven: 2.5 years
 - NPV @ 20 year horizon: $15,040,000
Identify/Quantify Revenue Streams

- Avoided tipping fees
- Avoided transportation costs for disposal
- Avoided electrical power purchase
- Sale of renewable energy certificates
- Sale of bio oil
NPV Analysis, Assuming...

- **Bonding**
 - 6% discount rate
 - 30-year maturity

- **Inflation of CPI-U at 3.10%**

- **Electric at $0.05/kWh (blended rate)**

- **Annual maintenance at 7% of CAPEX**

- **8,000 operating hours per year**
NPV Chart

BIO OIL PYROLYSIS WITH IC ENGINE GENERATION (2 PYRO AND 1 GENERATOR)
BUBBLING FLUIDIZED BED (ONE COMBUSTION TRAIN)
BIO OIL PYROLYSIS AND SALE OF BIO OIL
Elements to making __it happen

- Reason
 - High disposal cost
 - High cost of electricity
 - Other factors
- A taker for the power
 - Internal
 - External
- Test feasibility & develop pro forma
- Finance
- Design
- Build
- Operate & maintain
Conversion to an energy stream that

- is sustainable
- is constant
- adds to base
- has a high capacity factor
- does not rely on a technology breakthrough
- would have been buried
- is carbon neutral

just makes sense.
Thank You

- Contact:
 - Kevin Rhodes, Cincinnati
 - kevin.rhodes@woolpert.com
 - 513.527.2528