Water Supply and Reuse Strategies in the Southeastern United States

Joseph K. Robinson, PE, Woolpert R. Kent Veech, PE, Woolpert

Clean Water Columbus

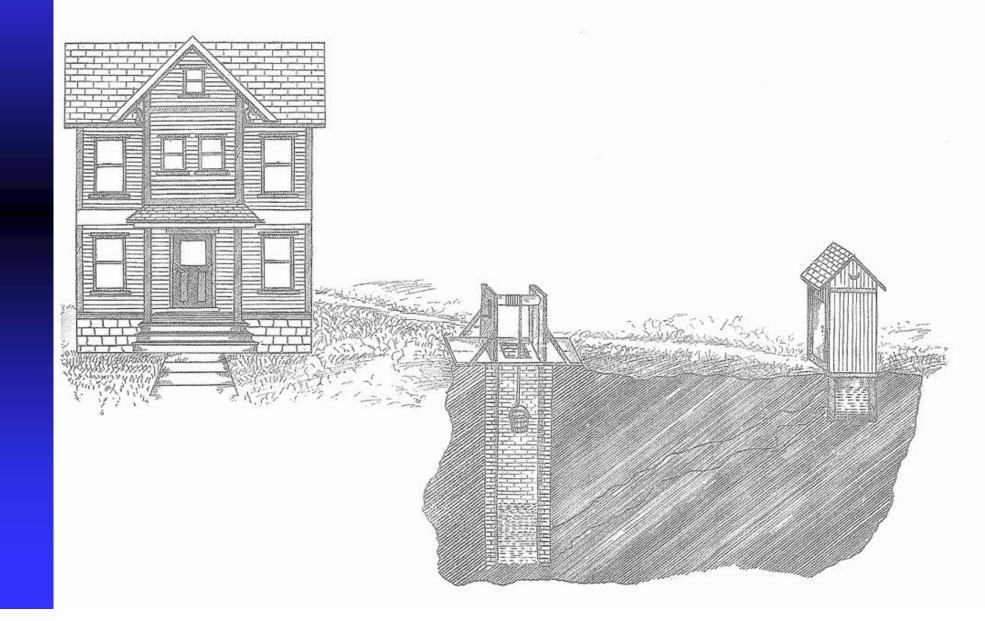
June 2010

Overview of Presentation

- Definition of Water Reuse
- Water Reclamation Options
- Importance of Water Reuse & Applications
- Three Case Studies
- Water Quality Requirements & Treatment Technologies
- Water Reuse Drivers
- Economics of Water Reuse
- Permitting Considerations
- Feasibility Study Guidelines

What is Water Reuse?

- Use of reclaimed wastewater to meet nonpotable needs
- High-level treatment of domestic wastewater (reclaimed water)
- Effluent previously considered a waste product requiring disposal – instead reuse for a beneficial purpose


Wastewater Reclamation Options

- Conventional treatment and surface water discharge (NPDES)
- Treatment and rapid infiltration (RIB)
- High-level treatment and reuse
- Satellite reuse systems
- Individual homeowner septic tanks

Importance of Water Reuse

- Of all the earth's water, 97% is salt water located in oceans and seas
- Only 1% of the earth's water is available for drinking water
- The other 2% of the earth's water is frozen
- Each person uses 60 to 100 gallons of water a day at home
- 50% to 70% of household water is used for watering lawns and gardens
- 30% to 35% of O&M costs for wastewater treatment is energy

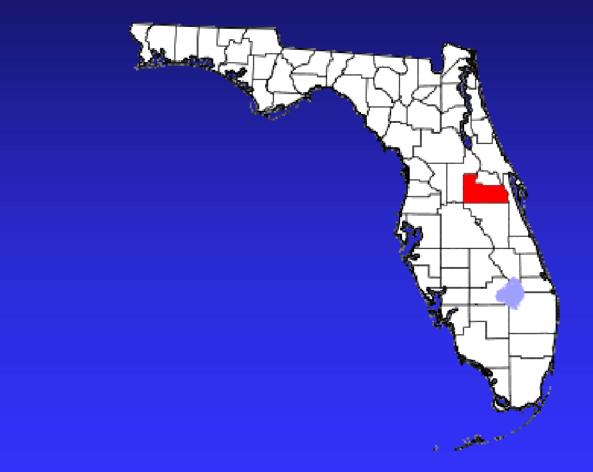
"Past Practices"

Where is Reclaimed Water Used?

Landscape irrigation Power plant cooling Boiler makeup Toilet flushing Indirect potable reuse Wetlands augmentation Fire protection

Municipal Water Reuse

Clarifier sprays
Equipment wash down
On-site irrigation
Plant make-up water


Satellite Reuse Systems

- Also known as scalping plants, sewer mining, etc.
- Located near point of use
- Usually involved membrane bioreactors (MBRs)
- Solids are returned to the sewer system
- Could lead to potential treatability problems at the wastewater treatment plant.

Three Water Reuse Case Studies

Orange County, FL – Wetlands Augmentation
 Occoquan, VA – Indirect Potable Reuse
 Duke University, NC – Chilled Water Make-Up

Case Study – Orange County, FL

Constructed Wetlands

- Orange County Northwest Water Reclamation Facility
- Increased reclaimed water system capacity by 3.0 MGD
- Encompasses 70 wetted acres comprised of six interconnected cells
- Wetland plant species selected for further uptake of nutrients
- Provides groundwater recharge
- Overflow goes into Lake Marden

Constructed Wetlands, cont.

- Provides groundwater recharge
- Increased water level in Lake Marden
- Various species of birds, fish and mammals have begun to migrate to the lake


Case Study – Orange County, FL

Three Water Reuse Case Studies

Orange County, FL – Wetlands Augmentation
 Occoquan, VA – Indirect Potable Reuse
 Duke University, NC – Chilled Water Make-Up

Case Study – Upper Occoquan Sewage Authority, Virginia

UOSA Reuse

54 million gallons per day facility Discharges into the Occoquan Reservoir Drinking water supply for 1 million people in Fairfax County Reclaimed water treatment includes filtration, activated carbon, and disinfection ■ 10 mg/l COD, 1 mg/l TSS, 0.5 NTU, and 2 coliform/100 ml

UOSA Reuse, continued

- Effluent returned to the natural environment and mixed with other waters
- Additional treatment provided includes sedimentation, filtration and disinfection prior to potable water distribution
- Operating for over 20 years
- Indirect potable reuse

Three Water Reuse Case Studies

Orange County, FL – Wetlands Augmentation
 Occoquan, VA – Indirect Potable Reuse
 Duke University, NC – Chilled Water Make-Up

Case Study: Duke University, NC

Chilled Water System

- Woolpert provided site, building, and MEP design services
- 17,000-T chilled water plant, expandable to 36,000-T
- Sustainable design concepts include natural lighting, variable-speed drive equipment, and rainwater recovery

Chilled Water System, cont'd.

- Recirculation Water Usually 3.0 gpm/T
- Over 73 Million Gallons per Day for 27,000-T System
- Make-up Water Required to Replace Losses from Evaporation, Blow-down and Drift

Other Applications for Water Reuse

Boiler water makeup – Pinellas County
 Golf course irrigation – Coastal NC/SC

Typical Water Quality Parameters Important for Municipal Reuse

- Tertiary quality effluent filtered or equivalent
- Biochemical oxygen demand a measure of the organic matter
- Total suspended solids a measure of the particulate content
- Ammonia due to breakdown of urea in the wastewater
- Coliform bacteria a measure of the microbial content
- Turbidity clarity of the water and an indication of the effectiveness of the filtration process
- Nutrients typically include nitrogen and phosphorus

Treatment Technologies for Water Reuse

- Conventional biological treatment (BOD and TSS Removal)
- Biological or biological/chemical nutrient removal
- Filtration conventional media or cloth disk
- High-level disinfection usually ultraviolet
- Online turbidity monitoring
- Upset pond
- Membrane polishing if required by end use

Examples of Reuse Drivers

- Restrictions on groundwater withdrawals
- Stress on surface water supplies
- Population growth
- Phosphorus limits into lakes and rivers
- Limited assimilative capacity of receiving streams
- Elimination of NPDES wastewater discharges
- Limitations on inter-basin transfer
- Support industrial development
- Economics
- Energy considerations

Water Reuse Economics

- Reclaimed water significantly less than the cost of potable water
- Often better quality water than raw surface or groundwater supplies (industrial reuse)
- Potential to minimize pumping and piping infrastructure

Water Reuse Economics

Representative potable water rates (inside)

- Greater Cincinnati Water Works: \$2.62/kgal
- City of Columbus: \$2.87/kgal
- Charlotte-Mecklenburg Utilities: \$1.94/kgal
- Orlando Utility Commission: \$0.63/kgal
- ♦ Gwinnett County: \$4.11/kgal
- City of Corona, CA: \$2.42/kgal
- Potential loss of potable water sales
- Additional costs for reclaimed water treatment
- Storage and distribution costs

Permitting Considerations

- Most reuse systems are permitted at the state level
- Allow adequate time for regulatory review and applicant response
- Water reuse projects typically complex
- Each project is unique

Reuse Feasibility Study Guidelines

- Technical criteria
 - Signage
 - Treatment limits
 - Licensed operator
 - Storage
- Economic criteria
 - Customer base
 - Wastewater availability
 - Distribution system costs
 - Population projections
- Environmental criteria
 - Reduced aquifer withdrawals
 - Construction impacts (i.e. wetlands)

Water Conservation & Energy

- Energy/Water Nexus: The Interrelationship Between Water and Energy
- Water Treatment Techniques are Becoming More Energy Intensive and Less Chemical Intensive (i.e. UV, Ozone vs. Chlorine)
- Additional Energy is Required for Water Distribution
- A Reduction in Water Usage Results in a Commensurate Reduction in Energy Usage

"The Future of Reuse"

"Water? Bottled, on tap or from the toilet?"

Questions and Answers

Joe Robinson, PE – Charlotte joe.robinson@woolpert.com Kent Veech, PE – Orlando kent.veech@woolpert.com Dan Whited, PE – Columbus dan.whited@woolpert.com Tom Brankamp, PE – Cincinnati tom.brankamp@woolpert.com Steve Morrison – Cincinnati steve.morrison@woolpert.com