Field Testing of Pump Stations

As Presented to 2010 OWEA Annual Conference

Testing As Performed for Columbus, Ohio in 2008-2009

Presented by

Paul Roseberry, PE
City of Columbus
Division of Sewerage and Drainage
James Ward, PE
Burgess & Niple, Inc.
Columbus, Ohio

The Columbus Pump Stations

- 70 pumps in 24 stations
- Storm water and wastewater
- 5 to 500 horsepower
- 4 inch to 48 inch discharge
- All physical styles
- All stations are telemetered to a central SCADA system, but instrumentation is generally sparse

Small Packaged Station

Dry Pit Submersible Station

Large Vertical Station

Large Axial Flow Submersible Station

Objectives

- Which pumps are wasting energy?
- Which pumps are a priority for repair/replacement?
- What is appropriate budget to sustain the pumps?
- What information is needed?
- What is the best way to obtain that info?

The nature of the problem...

- Some old, some new, some borrowed, some blue!
- Some pumps are used hourly
- Some pumps are not used every year
- All stations are unmanned and remote
- Observable performance opportunity is very limited
- Pumps valued at \$5,000 to \$360,000 each

What causes loss of performance?

- Age, years
- Run time, hours
- Rotational speed, rpm
- Wear due to abrasives, grit
- Corrosion due to electrolysis, salts
- Operating point off of best efficiency point

Performance Curve Example

Why is pump performance so important?

- "Off" performance causes premature seal and bearing failure thru increase vibration
- Pump repair/replacement requires equipment downtime, labor, and capital
- Pump performance affects power consumption
- Power consumption directly affects operating costs

Typical telemetered signals

- On/off
- Accumulated run time
- Wet well level
- Pump amps
- Station entry
- Loss of power

Instrumentation & SCADA limitations

- Reliability of primary sensors for flow, pressure, level, or power
- Data transients and anomalies
- Loss of calibration, both sudden and decay
- Loss of transmission signal
- Limitations in data storage and accessibility

Telemetering is a great tool, but in most cases the SCADA WORLD is not enough to determine individual pump performance in a reliable way.

The case for field testing ...

If you want to know how your pumps are performing (overall efficiency), hands-on field testing is the best way to find out.

Field testing – what is involved?

- 1. Collect & review existing records
- 2. Visit sites & gather more input information
- 3. Analyze station hydraulics
- 4. Develop test procedure; know expected values
- Install test instruments
- 6. Perform field test
- 7. Analyze results
- 8. Draw conclusions

Test parameters

- Flow or volume and time
- Level
- Pressure / head
- Power

Portable Ultrasonic Flowmeter

Portable Ultrasonic Level Sensor

Transmitting Pressure Gauge

Polyphase Wattmeter

Data Logger

The Columbus experience

- Flow metering versus <u>draw test</u>
- Pressure gauges vs <u>pressure transducers</u>
- Level sensing vs stick measurement
- Ammeter vs polyphase watt metering
- Measuring power vs use of power bills
- Electronic data logging vs manual

Points to consider in field testing

- Ultrasonic flow meters may be affected by throttling valve
- Force mains are dynamic water surge pressure waves may be experienced
- Pressures may be positive or negative sensors must be selected accordingly
- Voltages over 600 requires special power metering equipment

Further points to consider

- Field testing is not as accurate or as repeatable as factory testing
- High usage stations may justify permanent power monitoring
- Station voltages above 1000 volts, may justify permanent power monitoring

Typical output from field testing

PUMP TEST DATA FORM

STATION NO:	SA-13	PWR FACT:	DATE:	5/14/09
LOCATION:	585 Sulivant Auc	VOLTAGE:	CREW:	AL, ML, JR
PUMP NO:	#4 Runs 1+2	SPEED:	WEATHER:	Partly Cloudy, -75°

	(A)	(B)	(C)	(D) :	(E)	(F)	(G)	(H)
3		Wet Well	Displace	Metered	Discharge		Electrical	
	Time,	Level,	Flow,	Flow,	Pressure,	Power,	Current,	
	hh:mm:ss	# in	gpm	gpm	psig	R <u>watts</u>	<u>amps</u>	<u>Remark</u>
(1)	10:24:12	240.51		-	20.44	216.8	~	
(2)	+:30	243.69	13,579	-	19.95	209.5		
(3)	7:40	247.10	14.752	J	20.53	218.3	_	
(4)	÷:60	250.39	14,233	-	20.78	215,4	ſ	96902
(5)	1:80	253.57	13,805	—	20.63	209.5	1	
(6)	13100	256.63	13,284	Man.	81.66	211.0	1	
(7)	4:196	259.24	13,717		22.46	216.8	_	
(8)						10000000	1	
(9)	10:55:24	239.49		~	19.02	212.5	1	
(10)	†120	243.01	15,031	-	19.84	210.5	,	
(11)	+;40	246.19	13,757	-	20.03	216.8	-	1 Land West 1
(12)	1:60	249.71	15,228	-	19.32	<u>ئ</u> ة.5	-	
(13)	t: 80	252.77	13,284	<u> </u>	21.08	215.4	1	
(14)	1:100	255.95	13,805	-	21.76	211.0	1	
(15)	061:1	258.11	14,560	-	21.94	213.9		

NOTES:

Head performance curve

Power performance curve

Overall efficiency performance curve

Annual Pumping Cost

For a given pump, must know ...

- Rate of flow, Q
- Head at Q
- Annual run time
- Overall efficiency at Q
- Unit cost of power

Concept of efficiency deficiency

- Efficiency of perfect machine
 - Versus
- Overall efficiency as field measured
 - Efficiency of variable frequency drive
 - Efficiency of motor
 - Efficiency of transmission shaft & couplings
 - Efficiency of pump

Prioritization among multiple pumps

- Highest water horsepower (flow X head)
- Most annual run time
- Greatest overall efficiency deficiency
 Perfect machine field measured efficiency
- Highest unit power cost

Together this allows calculation of highest Present Value of "wasted" power – a priority rating tool

Priority Table

TABLE PRO-2b - PRIORITIZATION FOR UPGRADES Sorted by Current Priority

		_		Water			Unit	Present		
		Test	Test	Horse-		Overall	Cost of	Value of	Current	
Station	Pump	Flow	Head	power	Annual Run	Efficiency	Power	Lost	Priority	
No.	No.	gpm	feet	whp	Time hours	%	\$/kwh	Power	%	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	\$	(10)	
SA-02	1	3,900	106	104	1,213	44	0.042	38,992	15.7	
SA-02	3	4,100	115	119	490	58	0.105	25,553	10.3	
SA-02	2	3,900	102	100	878	50	0.042	21,339	8.6	
SA-13	1	660	72	12	3,034	47	0.074	17,501	7.0	
SA-13	2	730	80	15	2,619	55	0.074	13,471	5.4	
SA-05	2	2,650	24	16	2,988	48	0.042	12,578	5.1	
SA-01	2	6,050	52	79	959	62	0.042	11,297	4.5	
SA-05	3	2,500	18	11	2,273	38	0.042	10,196	4.1	
	68							248,365		
NOTES:										
1	Lost Power is the difference between operating the actual pump and a perfect machine.									
2	Presen	t Value is	based c	on interes	5	and perio	10			

Summary

- Loss of pump performance and increased power consumption frequently goes undetected
- Loss of pump performance wastes energy and literally sends money down the drain
- In general, permanent metering systems do not measure pump performance reliably
- Pump performance can be measured in the field with calibrated portable instruments
- Field-measured pump performance is a useful tool to prioritize repair/replacement projects