

WWTP Sustainable Design Opportunities A Case Study in Dubuque, Iowa

Randall A. Wirtz, Ph.D., P.E. Strand Associates, Inc.

Presentation Outline

- Background & History
- Project Drivers
- Major Project Elements
- Sustainability Drivers in Dubuque
- Sustainable Project Elements

Overview of the Water Pollution Control Plant

History of the Water Pollution Control Plant

History of the Water Pollution Control Plant

History of the Water Pollution Control Plant

1990s Modifications

- Preliminary Treatment
- Decommission Zimpro
- HPO Modifications
- Clarifier Upgrades
- Odor Control
- Reduce O&M

Project Drivers - Concerns & Issues

- 1. Plant Age
- **2.** Performance
- **3.** Capacity/City Growth
- **4.** Regulatory Changes

Project Drivers – Plant Age

- Systems and equipment 30-40 years old
- Reduced efficiencies; high maintenance
- Especially critical for incinerators

Dubuque WPCP Upgrade Project

- **1.** Planning started in 2007
- 2. Facilities Plan approved December 2008
- **3.** Design complete March 2010
- 4. Bid date May 20, 2010
- 5. Bid Amount: \$50 million
- **6.** Construction Completion: 2013

Major Project Elements

Sustainability Drivers

2006 program to establish Dubuque as a "Sustainable City"

2009 announcement to make Dubuque one of the first "smarter cities"

Energy Star rating for buildings, lighting, HVAC; possibly entire project/plant

Sustainable Dubuque

<u>11 Sustainable Principles</u>

- Regional Economy
- Smart Energy Use
- Resource Management
- Community Design
- Green Buildings
- Healthy Local Food
- Community Knowledge
- Reasonable Mobility
- Healthy Air
- Clean Water
- Native Plants & Animals

- "Dubuque will be a living lab...to develop an international smarter sustainable city model and a set of <u>reusable</u> assets..."
 - Transit & Transportation
 - Energy
 - Housing & Urban Development
 - Social Engagement Public Awareness
 - Health & Wellness
 - Parking Transit optimization

- Enhance the city's and citizens' understanding of energy consumption and water management
- Reduce costs and overall carbon footprint
- Implement an IBM platform for real-time integrated "sustainability monitoring"
- Energy management and energy use tracking within the electric grid water system, WPCP, etc.

- Portfolio Manager for WWTPs
 Benchmark against other WWTPs
- Specific Incentives for Energy Efficiency Improvements and Elements

Sustainable Project Elements Planning Phase

- Previous Planning in the 1980s (20 years ago):
 - Focused on incinerators
 - Air pollution was primary concern
 - "Protest" type opposition to incineration

Sustainable Project Elements Planning Phase

- 2007-2008 Planning:
 - Air pollution still primary concern
 - Engaged public and interest groups
 - <u>Discussion</u> vs. <u>protests</u>
 - Two public informational meetings/workshops
 - Industrial/commercial presentation and outreach
 - City council workshops
 - Additional presentations by WPCP staff to interested groups

Sustainable Project Elements Planning Phase

• Residuals Management Example

Example Current Solids Management Sludge Incineration

Example

Solids Management Alternatives

RM1	Refurbish both incinerators
RM2a	Refurbish one incinerator; use lime system for backup
RM2b	One new incinerator; use lime system for backup
RM3	Redundant lime stabilization systems; land application
RM4	Anaerobic digestion; land application
RM5	Anaerobic digestion and composting
RM6	Anaerobic digestion and drying; land application
RM7	Drying; land application

Example Capital Costs

Opinion of Capital Costs

Alt. RM1	Rehab Both Inc.	\$ 26,928,000
Alt. RM2a	Rehab. 1 Inc.; Lime Backup	\$ 17,781,000
Alt. RM2b	One new Inc.; Lime Backup	\$ 33,232,000
Alt. RM3	Lime Stabilization	\$ 12,173,000
Alt. RM4	Digestion & Land App.	\$ 26,788,000
Alt. RM5	Digestion & Composting	\$ 26,788,000
Alt. RM6	Digestion, Drying, and Land App.	\$ 42,790,000
Alt. RM7	Drying and Land App.	\$ 26,306,000

Example O&M Costs

		Opinion of Annual O&M		
Alt. RM1	Rehab Both Inc.	\$	862,000	
Alt. RM2a	Rehab. 1 Inc.; Lime Backup	\$	914,000	
Alt. RM2b	One new Inc.; Lime Backup	\$	914,000	
Alt. RM3	Lime Stabilization	\$	1,669,000	
Alt. RM4	Digestion & Land App.	\$	754,000	
Alt. RM5	Digestion & Composting	\$	790,000	
Alt. RM6	Digestion, Drying, and Land App.	\$	1,062,000	
Alt. RM7	Drying and Land App.	\$	1,391,000	

Example 20-Year Present Worth

		Opinion of Present Worth		% of Lowest (Present Worth	
Alt. RM1	Rehab Both Inc.	\$	37,624,000	126%	
Alt. RM2a	Rehab. 1 Inc.; Lime Backup	\$	29,941,000	100%	
Alt. RM2b	One new Inc.; Lime Backup	\$	45,469,000	152%	
Alt. RM3	Lime Stabilization	\$	33,530,000	112%	
Alt. RM4	Digestion & Land App.	\$	35,601,000	119%	
Alt. RM5	Digestion & Composting	\$	36,054,000	120%	
Alt. RM6	Digestion, Drying, and Land App.	\$	55,453,000	185%	
Alt. RM7	Drying and Land App.	\$	43,838,000	146%	

Example

40-Year Present Worth Costs

- City wished to look beyond the typical 20-year planning window to establish direction and evaluate long-term sustainability
- Anaerobic digestion alternatives had lowest 40-year present worth values

<u>Example</u> Carbon Footprint

Category	RM1	RM2	RM3	RM4	RM5	RM6	RM7
	Incin.	Incin.	Lime	AD	AD	AD + Dry	Drying
Electricity, MWH/yr	1,614	1,614	834	686	686	1,289	603
Nat. Gas, MBTU/yr	0	0	0	0	0	24,500	45,900
Fuel Oil, gal/yr	18,300	18,300	6,000	1,280	1,280	230	430
GHG Emissions, Tons of CO _{2e} /yr	1,300	1,300	640	480	480	2,300	3,100

Notes:

Carbon equivalents from electrical generation = 1.37 lbs CO₂/kWH.

Carbon equivalents of natural gas use = $117 \text{ lbs CO}_2/\text{MBTU}$.

Carbon equivalents of fuel oil use = 22.29 lbs CO₂/gallon.

Source: EPA Climate Change Website

Example Sludge Processing Direction

Anaerobic Digestion Selected

- Lowest annual O&M cost
- Lowest energy use
- Potential for energy generation
- Reasonable 20-year present worth cost
- Lowest 40-year (and beyond) present worth
- Most "Sustainable" solution

Sustainable Project Elements Anaerobic Digestion

High-strength industrial wastes/FOG wastes

- Digestion facilities are designed to accommodate
- Receiving station included
- Food residuals (commercial, institutional)
 - Preliminary design complete

Sustainable Project Elements Renewable Energy

- <u>Thorough</u> evaluation of renewable energy opportunities:
 - Solar
 - Wind
 - Geothermal
 - Effluent heat recovery
 - Biogas
 - Food residuals
 - Micro Hydropower
- Include effluent heat recovery and biogas reuse; plan for others

Sustainable Project Elements Cogeneration

Biogas Production at Design Conditions	260,000 ft ³ /day
Total Energy Content of Biogas	156 MMBTU/day
Electrical Generation Potential (kW) (kWH/day)	400 9,600
Net Electrical Generation Value @ \$0.08/kWH	\$768/day \$280,000/yr
GHG Emission Reduction Credit	4,800,000 lbs CO ₂ /yr**
(Biogas used to generate electricity)	~ 2,400 tons/yr

** 1 kWH ~ 1.37 lbs CO₂ equivalent.

Sustainable Project Elements Effluent Heat Recovery

Winter

HEATING MODE

Sustainable Project Elements Effluent Heat Recovery

COOLING MODE

Sustainable Project Elements Building Design

- Energy Star rating for the Administration Building
- Energy Star credits for process buildings
- Energy Star rating for plant?

Energy Efficiency (Thermal)

- Building Shell R Values (non-process)
 - R = 50 for roofs (typical design ~ 24)
 - R = 24 for walls (typical design ~ 14)
 - Specified wall panel system in lieu of standard infill
- Available credits of \$0.60/sq. ft. for thermal efficiency (occupied spaces)
 - \$6,000 for Admin. Bldg.

Energy Efficiency (HVAC/Mechanical)

- HVAC Modeling
 - TRACE 700 modeling of all occupied spaces
 - Identify thermal bridging
- Mechanical/thermal efficiency > ~93% (equipment)
- Available credits of \$0.60/sq. ft. for mechanical efficiency
 - Includes process buildings too

Energy Efficiency (Lighting)

- AGI32 Modeling of All Spaces — Interior and exterior lighting efficiency
- Available credits of \$0.60/sq. ft. for lighting efficiency
 - Includes process buildings too

Sustainable Project Elements Building Design

- Utility rebates materials, appliances, etc. (~\$250,000)
- Very Significant Design Effort
- Design Verification After Construction

Sustainable Project Elements Structure Re-Purposing

Sustainable Project Elements Site Design

Garden

WWTP Sustainable Design Opportunities A Case Study in Dubuque, Iowa

Randall A. Wirtz, Ph.D., P.E. Strand Associates, Inc.

Sustainable Project Elements Public Sharing/Education

• Plant operating data and energy use data sharing via the Internet.

Major Project Elements

Alt. RM1 – Refurbish Both Incinerators

Alt. RM2a – Refurbish One Incinerator Use Lime as Backup

Alt. RM2b – One New Incinerator Use Lime as Backup

Alt. RM3 – Lime Stabilization and Land Application

Alt. RM4 – Anaerobic Digestion with Land Application

Alt. RM5 – Anaerobic Digestion with Composting

Alt. RM6 – Anaerobic Digestion and Drying with Land Application

Alt. RM7 – Drying and Land Application

