Rare Earth Technology for Low Phosphorus Removal

Pam Cornish – Business Development Manager

OWEA Technical Conference & Expo – June 2017
Discussion Outline

- Rare Earth Technology Introduction
 - What are rare earths?
 - Rare earths vs. traditional P removal
 - Product Characteristics

- Performance of Rare Earth Technology in Wastewater Treatment Facilities

- Summary of Benefits of Rare Earth Technology
 - Ability to achieve low P levels
 - Sludge reduction
 - Improved Dewatering, Coagulation
 - Capital Costs Savings
What are Rare Earths?
Rare Earths in Water Treatment Markets

Recreation Water

Aquarium

Lake Remediation

Wastewater
Phosphorus Removal Mechanism

- Rare earth elements form strong, crystalline bonds with phosphorus
 - Forms insoluble rhabdophane precipitate

- Iron and aluminum based products form amorphous “cloud” in solution
 - Adsorbs phosphate onto metal hydroxide floc
Why RE is different than traditional coagulants

- Precipitate is CePO$_4$ / LaPO$_4$ (Rhabdophane)
- Forms ionic bonds
- Preferentially reacts with phosphorus
- Achieves 1:1 molar ratio of La/Ce:PO$_4$ → Reduced chemical sludge

- Forms Fe/AlOOH and Fe/Al(OH)$_3$ intermediates to adsorb P
- Phosphate adsorbs on the surface of the floc (surface chemistry)
Molar Dose Ratio of Traditional Coagulants

Aluminum

Iron

Phosphorus Removal Demonstration

- Rare earth chloride quickly reacts to form a dense precipitate which readily settles out of solution.
Molar Ratios of Coagulants Versus Final Concentration P

2.5 mg/L PO₄-P Starting Concentration

- RE100
- FeCl₃
- Fe₂(SO₄)₃ (as Fe)
- Alum (as Al)
- PAC (as Al)
- AlCl₃ (as Al)
- ACH (as Al)
Coagulant Comparison – 1 mg/L

Molar Ratios of Coagulants Versus Final Concentration P
1 mg/L PO₄⁻³-P Starting Concentration

- RE100
- FeCl₃
- Fe₂(SO₄)₃ (as Fe)
- Alum (as Al)
- PAC (as Al)
- AlCl₃ (as Al)
- ACH (as Al)

Phosphorus Concentration (mg/L PO₄⁻³-P) vs. Molar Ratio (RE, Fe, Al):P
Rare Earth Technology for Wastewater Industry

- Introduced in 2013
- Has been used in over 50 facilities in over 10 states, including Virginia, Pennsylvania, New York, Vermont, Ohio, Illinois, Wisconsin, Indiana, Texas, Washington
- Proven effective for meeting low phosphorus permit levels
- Additional benefits include sludge reduction & dewatering of biosolids
Product Characteristics

- Rare earth chloride solution
- Active Ingredient: CeCl$_3$ / LaCl$_3$

<table>
<thead>
<tr>
<th></th>
<th>RE 100</th>
<th>RE 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>% active ingredient (w/w)</td>
<td>33%</td>
<td>40.5%</td>
</tr>
<tr>
<td>Density (lbs/gal)</td>
<td>11.9</td>
<td>13.2</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>3 - 4</td>
</tr>
<tr>
<td>Freezing Point</td>
<td></td>
<td>-40°C</td>
</tr>
</tbody>
</table>

- Non-hazardous rating
- Compatible with existing equipment
 - 275 gallon totes / 3500 gallon tankers
Freezing Temp -40°C

- Outside storage @ -30°F in Northeast US during Winter 2015
Discussion Outline

- Rare Earth Technology Introduction
 - What are rare earths?
 - Rare earths vs. traditional P removal
 - Product Characteristics

- Performance of Rare Earth Technology in Wastewater Treatment Facilities

- Summary of Benefits of Rare Earth Technology
 - Ability to achieve low P levels
 - Sludge reduction
 - Improved Dewatering, Coagulation
 - Capital Costs Savings
Noman Cole VA WWTF

- 45 MGD municipal WRF located in Chesapeake Bay region
- Total phosphorus limit of 0.18 mg/L P
 - Target of 0.10 mg/L P
- Interested in seeking new coagulant with lower consumption rate, less chemical solids produced, and less staining of UV
Rare Earth technology maintained phosphorus below limit with a dosage rate 3x less than FeCl$_3$

Ferric
34 ppm$_v$
3.5:1 Fe/P

RE Dose
11 ppm$_v$
0.7:1 RE/P
City of Hartford WI WWTF

- 3.4 MGD municipal WWTF located in Wisconsin
 - Activated Sludge, Extended Aeration / Tertiary Filtration
- Current limit 1.0 mg/L-P / Upcoming limit of 0.075 mg/L-P
 - Final Compliance Report submitted July 2016
- Previously used ferrous chloride (FeCl$_2$) for chemical P removal
 - 200 GPD achieved ~0.8 mg/L (~ 100 ppmv)
 - Lowest TP level achieved with FeCl$_2$ was 0.3 mg/L
Hartford achieved < 0.075 mg/L effluent
• RE 100 dose in 2016 was 69 GPD to achieve < 0.075 mg/L-P (36 ppmv)
• → 0.97:1 Molar Ratio (Rare Earth:Phosphorus)
Hartford WPCF Preliminary Facilities Planning

<table>
<thead>
<tr>
<th>Process</th>
<th>Equipment Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrafiltration</td>
<td>$4,567,000</td>
</tr>
<tr>
<td>Disk Filtration (cloth)</td>
<td>$974,000</td>
</tr>
<tr>
<td>Disk Filtration (membrane)</td>
<td>$1,026,000</td>
</tr>
<tr>
<td>Ballasted Sedimentation</td>
<td>$1,153,000</td>
</tr>
<tr>
<td>Continuous Backwash Filter</td>
<td>$1,950,000</td>
</tr>
<tr>
<td>Rare Earth Product/Biological</td>
<td>$0</td>
</tr>
</tbody>
</table>

Use Anthracite Filters Concrete Superstructure
No new Building
Rare Earth Technology Benefits – Hartford WI WWTP

- Able to reach ultra low phosphorus level without capital costs
- Significant reduction in sludge volume (~ 40%)
 - FeCl₂ Sludge Volume = 6 MG/year (dose rate to meet 1 mg/L-P)
 - RE Sludge Volume = 3.7 MG/year (dose rate to meet 0.075 mg/L-P)
- Thicker MLSS concentration
- Lower SVI
- Non-potable water has no smell
- Plant runs more smoothly
 - RE creates a buffer in the process to withstand large spikes in influent P
City of Virginia MN WWTF

- 2.7 MGD Municipal WWTF located in Minnesota
 - Activated Sludge Aeration Basins / Secondary Clarification / Filtration
 - Anaerobically digester; belt filter press
- Minnesota Pollution Control Agency (MPCA)
 - Current phosphorus limit of 0.8 mg/L-P (CalMonAvg)
 - 0.5 mg/L 12 month rolling avg
 - New permit of 0.07 mg/L-P (CalMonAvg) – Mar 2023
 - Mgmt Plan with Annual Progress
 - Alternatives Identification Plan (Jan 2017)
- Currently use ferric chloride to meet permit
- TRIaled Ferric + PAC in 2015
- TRIaled RE 100 in Summer 2016
City of Virginia MN – RE 100 Trial Results

- Despite Influent P variability, effluent TP remains below 0.07 mg/L
City of Virginia MN – RE 100 Trial Results

![Graph showing RE 100 trial results with key data points: Ferric to RE 100 transition, 54 ppm, 35 ppm, 18 ppm, and 11 ppm.]

- For Ferric to RE 100 transition:
 - 54 ppm
- P Limit:
 - 18 ppm
- Coagulant Dose (GPD):
 - 11 ppm
City of Virginia MN – RE 100 Trial Results

- RE 100 dose of 32 GPD achieved <0.07 mg/L-P
Belt Filter Press results with RE 100
- ~977 more gallons removed per hour (vs. Ferric)
- 7,783 more gallons removed per month (vs. Ferric)
- Ferric + PAC trial – Biosolids production increased by 5000 gpd

Performance improvement occurred after one month of feeding RE-100. Additional improvement may be evident over longer periods of time.

“Perhaps the greatest benefit of RE 100 to biosolids dewatering at the Virginia MN Wastewater Treatment Facility was the avoidance of issues seen with Polyaluminum Chloride during the 2015 Pilot Study that led to over-thickening of biosolids in the anaerobic digester and a dramatic decrease to dewatering efficiency. The fact that RE 100 increased dewatering efficiency at all while achieving effluent total phosphorus results below 0.07 mg/L demonstrates its superiority over other chemicals on the market today.” Brad Bennett, People Services
City of Virginia, MN WWTF

Ferric + PAC
- 45 ppm PAC + 70 ppm Ferric
- 38 days of results
- Linear relationships
- Freezes @ approx. 32°F
- Add’l infrastructure/renovation needed
- May need add’l digester

RE 100
- 30 ppm RE 100
- 54 days of results
- Built up quickly in RAS
- Maintained low results @ 30 GPD feed rate
- Freezes @ -40°C
- Can use existing infrastructure
- Improved bio-solids dewatering performance

Met limit
Did not bind filters
Improved treatment overall
RE 100 Benefits –
City of Virginia, MN WWTF

- Achieved < 0.07 mg/L-P in final effluent
- Avoidance of capital costs (vs. FeCl₃ + PAC)
 - Add’l infrastructure/renovation required for PAC due to freezing point
 - Decreased sludge volumes eliminate need for add’l digester
- Decrease in sludge volume
 - Will better quantify sludge reduction for 2nd trial on-going in 2017
- Improved dewatering of biosolids
- Decrease in chloride levels vs. FeCl₃
Key Benefits of Rare Earth Technology

- Less coagulant volume required to reach low phosphorus limits
- Significant reduction in chemical sludge volumes through targeted chemical reaction
- Improved coagulation – noticeable improvement in water clarity
- Improved dewatering of biosolids
- Non-hazardous – safer to work with than iron based products
- Non corrosive – less maintenance costs
- Eliminates need for settling aids, polymers/flocculants
- No need for pH adjustment – Low pH of iron and aluminum based products can require addition of pH control chemicals
- Will not stain or discolor facility structures or equipment
- Compatible with existing equipment
Rare Earth Technology Benefits – Fond du Lac WWTP

Fast Coagulation properties

Plant Effluent – from 3.6 mg/L-PO4 to 0.6 mg/L-PO4 in 48 hours
Rare Earth Technology Benefits

Fast Coagulation properties

- Mixed Liquor sample - settling

<table>
<thead>
<tr>
<th>Initial</th>
<th>1 min</th>
<th>2 min</th>
<th>4 min</th>
<th>5 min</th>
<th>10 min</th>
</tr>
</thead>
</table>

([Image of settling samples])
Fast Coagulation Properties

- Molecular weight of rare earth vs. traditional chemical coagulants is much higher

- Forms denser precipitate which settles well in clarifier
Rare Earth Technology Benefits – Fond du Lac WWTP

- Improved dewatering of biosolids
 - Cake %TS

<table>
<thead>
<tr>
<th>Before RE 100</th>
<th>After RE 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 – 26%</td>
<td>28 – 29%</td>
</tr>
</tbody>
</table>

- Prevention of struvite formation

- Plant runs more smoothly
 - RE 100 provided a buffer in the process to manage spikes of industrial feed containing high levels of phosphorus
Rare Earth Technology Benefits – Albion PA

Improved water clarification

Before RE100 addition

After RE100 addition
Albion PA “In 30 years of working here, I have never seen the clarifier look that clear!”
Improved Dewatering of Biosolids

- Albion PA WWTF: “We have doubled our belt filter press throughput, compared to iron and aluminum.”
Improved coagulation & settling in clarifiers

Significant decrease in sludge volume
- 68% savings on the sludge disposal costs/year
 = $70,000/year annual savings

Improved performance on belt filter press
- Prior to RE100, ran belt filter press 5 days/week
- With RE100, run only 1 day/week
- → 80% decrease in energy savings (estimated to be $7K/year)

Less maintenance, more steady overall operations
Northern Moraine Water Reclamation District, Illinois (NMWRD)

- 2 MGD municipal WWTF located in Illinois (Design Max 5 MGD)
- Effluent discharges to Fox River
 - Illinois Environmental Protection Agency’s list of impaired waterways
- No current phosphorus permit & not equipped for chemical dosing
 - New limit of 1.0 mg/L-P
 - Plans & Specifications due May 2017 / Full compliance May 2019
- TRIaled RE 100 in Summer 2015
RE 100 Dose Rates @ NMWRD

- 9 GPD achieve < 1.0 mg/L-P (8 ppm$_v$)
- 12 GPD achieved < 0.5 mg/L-P (11 ppm$_v$)

Figure 2. NMWRD Pilot Test Data, SorbX-100 Dosages 6.29.15 to 8.29.15 vs. Effluent P concentrations.
NMWRD – RE 100 Trial Results

RE100 continued to suppress phosphorus levels for 2+ months after turning off dose.

Figure 3. NMWRD Pilot Test Data, SorbX-100 Averages P and PO4 mg/l at each dosing rate.
NMWRD – RE100 Trial Results

- Plant Flow = 1.1 MGD

- Influent P = 6.2 mg/L (3.8 – 12.4 mg/L)
 - High P peaks due to side stream impacts from digester decant and dewatering centrifuge concentrations of around 15.7 mg/l TP

- RE100 dose rate
 - 9 GPD achieve < 1.0 mg/L-P (8 ppm\(_v\))
 - 12 GPD achieved < 0.5 mg/L-P (11 ppm\(_v\))
Reduction in Capital Costs

Costs for chemical addition facilities needed to meet limits of 0.5 to 1.0 mg/L

<table>
<thead>
<tr>
<th>Description</th>
<th>FeCl3 * Chemical Feed Building and System</th>
<th>SorbX-100 Chemical Feed Building and System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Subtotal</td>
<td>$358,015</td>
<td>$100,000</td>
</tr>
<tr>
<td>General Conditions</td>
<td>$44,750</td>
<td>$12,500</td>
</tr>
<tr>
<td>Contingency @ 25%</td>
<td>$100,690</td>
<td>$25,000</td>
</tr>
<tr>
<td>Construction total</td>
<td>$503,455</td>
<td>$137,500</td>
</tr>
<tr>
<td>Design Engineering @ 7.5%</td>
<td>$37,760</td>
<td>$10,312</td>
</tr>
<tr>
<td>Construction Engineering @ 7.5%</td>
<td>$37,760</td>
<td>$10,312</td>
</tr>
<tr>
<td>Total Capital Costs</td>
<td>$578,975</td>
<td>$158,124</td>
</tr>
</tbody>
</table>

* Source: Trotter and Associates 2014 Facility Plan Update
RE 100 Benefits – NMWRD WWTF

- RE100 quickly achieved target in effluent
- RE100 continued to suppress phosphorus levels for several months after dosing was turned off
- Reduced capital costs to meet 0.5 – 1.0 mg/L-P
 - No need for large chemical storage tanks, buildings and ancillary equipment
 - No need for tertiary filtration
- Preferred a non-hazardous product
Discussion Outline

- Rare Earth Technology Introduction
 - What are rare earths?
 - Rare earths vs. traditional P removal
 - Product Characteristics

- Performance of Rare Earth Technology in Wastewater Treatment Facilities

- Summary of Benefits of Rare Earth Technology
 - Ability to achieve low P levels
 - Sludge reduction
 - Improved Dewatering, Coagulation
 - Capital Costs Savings
Plant Trial Recommendations

- Understand phosphorus levels throughout plant
 - TP & OP

- Know the phosphorus speciation in the plant
 - sNRP is important to know if phosphorus permit is < 0.5 mg/L-P

- Minimum trial period is 3 months
 - Unable to quantify overall benefits in less time

- Plant needs the ability to measure phosphorus
 - At a minimum, have ability to measure OP
Conclusions

Observed Benefits of Rare Earth Technology

- Able to achieve very low TP discharge limits without capital equipment
- Significant reduction in sludge volumes
- Faster coagulation and noticeable water clarification
- Less coagulant volume required to reach low phosphorus limits
- Reduction in maintenance costs vs. ferric-based coagulants
- Will not stain or discolor facility structures or equipment
- Compatible with existing dosing and filtration equipment
- Rated non-hazardous for DOT regulations
Questions?

- Pam Cornish
 - p.cornish@neomaterials.com
 - 734-216-2089