OEPA CSO Overflow Reporting

Lita Laven, PE, Northeast Ohio Regional Sewer District Jennie Celik, PE, HDR

June 28, 2017

Regional Sewer District

Agenda

- 1) NEORSD Background
- 2) Project Overview & Objectives
- 3) Field Investigations
- 4) Data Review
- 5) CSO Overflow Volume Calculations
- 6) Hydraulic Model Comparison
- 7) Next Steps

NEORSD Background

Governance

- Created in 1972 by Court Order
- Political subdivision of Ohio
- Governed by seven Trustees
- Servicing all or part of 62 member communities, >1 million customers
- Average daily flow treated ~230 million gallons

NEORSD Responsibility

- Wastewater Treatment Plants
- Interceptor sewers
- Combined Sewer Overflow (CSO) Control
- Regional Stormwater Management

NEORSD Service Area

CSO Long-term Control Plan

Northeast Ohio

Historical NEORSD CSO Permit Monitoring

1988–1997 – Initial CSO Monitoring Program

- 3PA00002*DD
- Monitored five CSOs at a time each month
- Data collected:
 - BOD
 - total suspended solids
 - flow rate
 - duration of overflow
 - number of occurrences

Northeast Ohio Regional Sewer District

1997-2014 - No Defined CSO Permit Monitoring

- CSO Facilities Planning
- CWA 308(a) Requests
- CSO Operational Plan
 Notification
- Water Quality
 Monitoring
 - Streams and Lake
- Beach Monitoring
- Consent DecreeMonitoring

Project Background & Objectives

NPDES Permit 3PA00002*GD

- Effective October 1, 2014
- CSO Monitoring Requirement
 - Monthly CSO overflow occurrence and volume
 - 21 CSO stations
 - CSO occurrence sampling and analysis
 - 7 of the 21 CSO stations
 - 2 days during the calendar year

Project Background

- Permit Requirement
 - Develop CSO Monitoring & Sampling Plan
 - NEORSD reviewed existing monitoring and overflow estimation program
 - New monitoring needs
 - Need for refined equations for existing monitors

Project Objectives

- General Engineering Services Task Order
- Develop new CSO calculations to support monthly eDMR reporting
 - Defensible
 - Easy to use by District staff

Approach

Approach

- Background Review of Reporting
- Desktop Review of Regulators
- Field Investigation
- CSO Overflow Volume Calculation
- Data Review

Desktop Review

- Weir Configurations
 - Weir, Broad-crested
 - Weir, Sharp-crested
 - Bascule Gate
 - Slide Gates
- Instrumentation
 - Level instrument (pressure transducer, bubbler)
 - Flow Meter

CSO-258: Desktop Review

- Vertical silo
- Overflow from 120" Mill Creek Tunnel
- Curved weir with vertical bars

CSO-258: Desktop Review

 Pressure transducer installed invert of an 18" pipe

CSO-258: Desktop Review

 Pressure transducer installed invert of an 18" pipe

CSO-258: Desktop Review

CSO-258: Field Investigation Photo Log

Regional Sewer District

CSO-258:

Overflow Volume Calculation

- Curved Weir
- Contracted sides
- Sharp-crested Weir
- Non-submerged
- Effective weir length
- Instrument Reading when water level is at weir crest

 Contracted, nonsubmerged weir equation

$$Q = \left(\frac{2}{3}\right) C b_{eff} H^{3/2} \sqrt{2g}$$

 $H = H_{US} - H_{WEIR}$

CSO-044: Desktop Review

- Bascule Gate Auto-Regulator (1-100% Open)
- Storm gate opens by hydraulic operator when set points are met.

CSO-044: Desktop Review

* Above sewerinvert

CSO-044: Desktop Review

Regional Sewer District

CSO-044: Field Investigation Field Measurements

Level Determination

Source: www.globalspec.com

CSO-044: Overflow Volume Calculation

- Initially, flow is restricted by partially open gate position
 - Weir Control
- Then, flow is restricted by the outlet
 - Inlet Control
- Used If / Then logic to determine

- Contracted, nonsubmerged weir equation (shown earlier)
 - Inlet Control Equations

Source:

April 2012 Publication No. FHWA-HIF-12-026 Hydraulic Design Series Number 5

HYDRAULIC DESIGN OF HIGHWAY CULVERTS Third Edition

Other Sites:

CSO-<u>056</u>

Influent <u>CSO-025</u>

DWO Gate

SWO Gate

Regional Sewer District

Typ Weir Opening

Other Sites:

CSO-025

Chamber

Typ Weir Opening

Level Sensor

OEPA Reporting

Time	CSO 45 FLOW	CSO45 LEVEL (Level in Trunk in feet)	CSO 045 (SWO gate position in %) Gate Opening, G (0-100)
	MGD	FT	%
8/24/2016 23:25		3.03	1.47
8/24/2016 23:30		3.03	1.47
8/24/2016 23:35		3.03	1.46
8/24/2016 23:40		3.03	1.46
8/24/2016 23:45		3.03	1.47
8/24/2016 23:50		3.03	1.47
8/24/2016 23:55		3.03	1.46
8/25/2016 0:00		3.03	1.47
8/25/2016 0:05		3.03	1.47
8/25/2016 0:10		3.03	1.46
8/25/2016 0:15		3.03	1.47
8/25/2016 0:20		3.03	1.47
8/25/2016 0:25		3.03	1.46
8/25/2016 0:30		3.03	1.47
8/25/2016 0:35		3.03	1.47
8/25/2016 0:40		3.03	1.47
8/25/2016 0:45		3.03	1.46
8/25/2016 0:50		3.04	1.47
8/25/2016 0:55		3.04	1.47
8/25/2016 1:00		3.04	1.47
8/25/2016 1:05		4.51	1.48
8/25/2016 1:10		8.32	1.49
8/25/2016 1:15		8.62	1.49
8/25/2016 1:20		8.43	1.51
8/25/2016 1:25		8.17	1.50
8/25/2016 1:30		7.98	1.50
8/25/2016 1:35		7.91	1.51
8/25/2016 1:40		7.89	1.53
8/25/2016 1:45		7.81	1.52
8/25/2016 1:50		7.72	1.49
8/25/2016 1:55		7.63	1.53
8/25/2016 2:00		7.55	1.53
8/25/2016 2:05		7.48	1.53
8/25/2016 2:10		7.42	1.53
8/25/2016 2:15		7.37	1.53
8/25/2016 2:20		7.33	1.53
8/25/2016 2:25		7.29	1.53
8/25/2016 2:30		7.24	1.55
8/25/2016 2:35		7.18	1.53
8/25/2016 2:40		7.11	1.52
8/25/2016 2:45		7.03	1.56
8/25/2016 2:50		6.95	1.53
8/25/2016 2:55		6.85	1.52
8/25/2016 3:00		6.74	1.56

Ohio EPA - Form	4500 - Data Ent	ry Spreadshe	et		
Facility:	Northeast Ohio	Regional SD			
Permit:	3PA00002*GD				
Monitoring Period:	Aug-16				
Station Code:	045				
	74062		74063		
	Overflow Occu	rrence	Overflow Volu	ne	
	No./Month		Million Gallons	;	
	When Disch.		When Disch.		
	Total		24hr Total		
					RAIN
					DAY YES
					OR NO?
					Based
Date	Measurement	Comment	Measurement	Comment	On Total
8/24/2016	0				N
8/25/2016	1		0.0725		N
8/26/2016	0				N
8/27/2016	0				N
8/28/2016	0				N
8/29/2016	0				N
8/30/2016	0				N
8/31/2016	0				N
9/1/2016	0				N
9/2/2016	0				N
9/3/2016	0				N
9/4/2016	0				N
9/5/2016	0				N
9/6/2016	0				N
9/7/2016	0				N
9/8/2016	1		0.0041		N
9/9/2016	0				N
9/10/2016	0				N
9/11/2016	0				N
9/12/2016	0				N
9/13/2016	0				N
9/14/2016	0				N
9/15/2016	0				N
9/16/2016	0		0.4564		N N
9/17/2016	1		0.1504		N
9/18/2016	0				N N
9/19/2016	0	1			IN N
9/20/2016	0				IN N
9/21/2016	0	1			IN N
9/23/2016	0				IN N

Hydraulic Model Comparison

Hydraulic Model Comparison

CSO Site	NPDES Calculations		Hydraulic Model	
CSO Site	Asset ID	Configuration	Version	Model ID
025	MC-64	Weir, Broad	MCCS	CSO 025
035	S-75	Weir, Broad	SOBL	S75.2
038	S-82	Inlet	SOBL	CSO 038
040	SO-08-AKC	Weir, Sharp	SOBL	SO8.1
044	BC-03-AIS	Bascule Gate	BCBL	CSO 044
045	BC-05-AJB	Slide Gate	BCBL	CSO 045
056	BC-10A-ABK	Weir, Sharp	BCBL	CSO 056
058	BC-08-APU	Bascule Gate	BCBL	BC8.2
059	BC-02-ASJ	Bascule Gate	BCBL	BC2.1
069	NW-03-AEG	Slide Gate	WEBL	CSO 069
072- SOBL	SO-01-AHA	Bascule Gate	SOBL	CSO 072
080	WR-27	Weir, Broad	WEBL	CSO 080
088²	-	-	WEBL	CSO 088
200	FCT	Flow Meter	ESBL	CSO 200
202	FSM	Flow Meter	ESBL	CSO 202
206	FEO	Flow Meter	ESBL	CSO 206
211	H-19	Weir, Broad	ESBL	H19.2
218	DV-25	Flow Meter	ESBL	CSO 218
239	L-39	Weir, Broad	ESBL	CSO 239
242	L-23	Weir, Sharp or Broad	ESBL	CSO 242
258	SILO-CMC	Weir, Sharp	MCCS	CSO 258

¹ Per NEORSD's CSO Monitoring and Sampling Plan, version Addendum #1, dated June 2015.
² CSO Site added after development of original regulator equations.

Hydraulic Model Comparison

CSO Site/	Dates of Ava	Number of	
Regulator	eDMR	Model	Months Compared
025	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
035, S-75	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
035	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
038	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
040, SO-08	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
040	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
044	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
045	10/1/2015 - 2/29/2016	1/1/2015 - 2/29/2016	5
056	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
058, BC-08	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
058	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
059, BC-02	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
059	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
069	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
072	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
080	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
088 ¹	2/1/2016 - 2/29/2016	N/A	0
200	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
202	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
206	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
211, H-19 ²	1/1/2016 - 2/29/2016	1/1/2015 - 12/31/2015	0
211 ²	1/1/2016 - 2/29/2016	1/1/2015 - 12/31/2015	0
218	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
239	4/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	9
242	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3
258	10/1/2015 - 2/29/2016	1/1/2015 - 12/31/2015	3

¹ CSO 088 site was added after development of original regulator equations. The flow meter at that site was installed on 2/1/2016.

² CSO 211 site does not have eDMR data available. The flow meter at that site was installed on 1/1/2016.

Hydraulic Model Comparison

CSO 040

Hydraulic Model Comparison

CSO 056

Hydraulic Model Comparison

CSO 239

Regional Sewer District

Conclusions

- The comparison between the two methods were not conclusive.
- Hydraulic model predicted more overflows & greater volume, in general.
- The District has defensible backup for overflow reporting

Things to Consider

- Model calibration & instrument calibration
- Flow meter vs level instrument
- Regulator configuration in the model vs fieldverified information.
- Debris in structures impacted level reading.
- Level sensors downstream of gates, to detect backflow / river levels
- Weir plates for more improved hydraulics

Next Steps

Next Steps

- Refine 1 CSO calculation based on additional monitoring data
 - River intrusion
- Seek integrating calculation with automation project to streamline process

Lessons Learned

Lessons Learned

- Perform thorough desktop review before field visits.
- Understand the data you need to collect to avoid several site visits.
- Civil & instrumentation discipline coordination required.
- Calculation programming in Excel more complicated than expected.

Thank you!

• Acknowledgements:

- AECOM (formerly URS), Cleveland, Ohio
- KS Associates, Elyria, Ohio
- NEORSD Staff (Systems Integration, Sewer System Maintenance & Operations (SSMO))
- Contact Info:
 - Lita Laven: Lita.Laven@neorsd.org
 - Jennie Celik: Jennie.Celik@hdrinc.com

