

Vertical Route or Under Pressure: Aeration Analysis for EBNR

Lindsey Hassenauer, PE Principal Engineer

Hazen

Presentation Overview

- Project Background
- Aeration Alternatives Development
- Process Modeling
- Aeration Demand
- Alternatives Analysis
- Recommendations

Project Background

Project Background – UMC Operational Challenges

- Significant spikes of TP and TSS in effluent 2009-2011
 - Accompanied by spikes in CBOD and TSS in influent
- High number of industrial users
- 2012-2014
 - Operations support
 - Evaluation of nutrient instability and process performance
 - Developed calibrated process model for optimization

Project Background – UMC Operational Challenges

Objective of Project

Evaluate alternatives for aeration to <u>improve treatment process</u> <u>performance and reliability</u> and <u>reduce O&M costs</u>.

Project Scope

- Review data and existing equipment to evaluate performance
- Develop design criteria for aeration system
- Process model simulations to confirm improvements
- Evaluate and recommend most effective option for meeting aeration demand and permit requirements

Upper Mill Creek WRF Overview

OD1

Average flow 9.1 mgd Rated capacity 16 mgd

5-stage BNR with oxidation ditches

OD2

Existing Aeration System

- 2 Oxidation Ditches 2 Treatment Trains
 - 3 150 HP Vertical Surface Aerators (2 speed)
 - 6 Retractable Diffuser Grids
 - 4 Rotary Lobe Blowers

Oxidation Ditch 1

Oxidation Ditch 2

UMC WRF Select NPDES Permit Limits (Monthly Average)

Season	Total CBOD	TSS	Ammonia	Nitrite + Nitrate	Total P
Summer Limit (mg/L)	10	12	1.0	5.0	1.0
Winter Limit (mg/L)	10	12	3.0	5.0	1.0

Aeration Alternatives Development

Technology Alternatives

- New vertical surface aerators with VFDs
 - More efficient, better turndown, better mixing, more air than existing
- Conventional fine bubble diffusers, high speed blowers and submersible mixers.
 - Decouple aeration and mixing
 - Moves away from traditional OD configuration

Alternatives List

- 1. New vertical surface aerators with VFDs
- 2. Conventional fine bubble diffusers, high speed blowers and submersible mixers
- 3. Alt 1 plus post aeration tank
- 4. Alt 2 plus post aeration tank

New Aerators – Layout

New Fine Bubble Diffusers – Layout

Process Modeling

Influent Characterization

• Three years of data

Year 1 – August 2011 – July 2012 Year 2 – August 2012 – July 2013 Year 3 – August 2014 – July 2015

 Influent inputs – based on three-year average of Max 30-Day Average for each parameter

Process Simulations

Oxidation Ditch 1 BioWin Configuration

Process Simulations – Evaluations

- <u>Maximum sustainable treatment capacity of a single OD</u> while meeting permit
- Verify expected performance of oxidation ditches with upgraded aeration systems
- Verify SND needed to meet N limits

Season	Total CBOD	TSS	Ammonia	Nitrite + Nitrate	Total P
Summer Limit (mg/L)	10	12	1.0	5.0	1.0
Winter Limit (mg/L)	10	12	3.0	5.0	1.0

Evaluation of Post Aeration

- SND required for current and future N limits increases risk of P release at low DO
- Preventing DO sag can be difficult in large volume ODs (UMC high soluble organic loads at times)
- If P release occurs more chemical feed is required and increases risk of unstable Bio-P due to excess chemical
- Evaluated use of post aeration tanks to improve process stability for both N and P removal

Process Simulations for Alternatives

Item	Flow (MGD)	CBOD (mg/L	TSS (mg/L)	Ammonia (mg/L)	Nitrite + Nitrate (mg/L)	Total P (mg/L)	Sodium Aluminate (gal/d)
Permit Limits	-	10	12	1.0	5.0	1.0	-
Alternative 1 New Aerators	10	1.6	1.7	0.8	4.2	0.7	55
Alternative 2 New Fine Bubble Diffusers with Submerged Mixers	10	2.1	1.9	1.8	0.9	0.8	15
Alternative 3 New Aerators with Post Aeration	10	1.6	1.7	0.1	3.0	0.5	0
Alternative 4 New Fine Bubble Diffusers with Submerged Mixers with Post Aeration	10	1.9	1.9	0.4	2.4	0.2	0

- Determine oxygen demand based on influent BOD and TKN
 - 1.2 lb O₂ per lb BOD
 - 4.57 lb O_2 per lb TKN
- Denitrification credit
 - 2.86 lb O_2 per lb $N_{2 \text{ gas}}$ (TKN_{oxidizable} NO₃ eff)
- AOR = $1.2 * BOD + 4.57 * TKN 2.86 * N_{2 gas}$
 - Actual Oxygen Requirement, lb O₂/d

- Convert AOR to SOR
- Surface Aerators versus Fine Bubble Diffusers

Aeration Demand – Design Alpha-F

- Alpha Factor (α)
- Fouling Factor (F)
- Wastewater Correction Factor for Oxygen Transfer
- Impacted by a number of factors, including type of aeration device
- For UMC:
 - α F for fine bubble diffusers = 0.5
 - α F for surface aerators = 0.85

Aeration Demand – Assumptions

- Determine oxygen demand based on influent CBOD and TKN
- Dissolved oxygen of 2.5 mg/L in first aeration passes to meet ammonia limit based on modeling
- No denitrification credit
- Summer conditions (worst case for O₂ transfer)
- Current and future conditions (increased flow, maintain same influent concentrations)

Condition	Current Average Annual	Max Treatment Capacity per Ditch	Max 30-Day Running Average	Future Average Annual	Future Max 30- Day Running Average
Influent Flow per Basin (mgd)	9.11	10.00	6.40	8.00	11.24
Influent CBOD5 (mg/L)	150	150	127	150	127
Influent TKN (mg/L)	45.9	45.9	38.0	45.9	38.0
Design Alpha Factor (αF) - Surface Aeration	0.85	0.85	0.85	0.85	0.85
Design Alpha Factor (αF) - Diffused Aeration	0.5	0.5	0.5	0.5	0.5
SOR per Ditch (lb O ₂ /day) - Surface Aeration	48,000	53,000	28,200	42,100	49,500
SOR per Ditch (lb O ₂ /day) - Diffused Aeration	81,600	90,000	47,900	71,900	84,000

Existing Aeration Capacity

Oxygen Supply	Existing SOR
Aerators Total Per Basin (lb O ₂ /d)	36,000
Diffusers Total per Basin (lb O ₂ /d)	9,000
Total per Basin (Ib O ₂ /d)	45,000

 Max required 53,000 lb/d O₂ required (surface aeration)

Alternatives Analysis

Alternatives Evaluation – OPCC

ltem	Description	OPCC
Alternative 1	New 200 HP Vertical Surface Aerators	\$2,940,000
Alternative 2A	New 200 HP Blowers, Diffusers, and Mixers	\$6,220,000
Alternative 2B	New 300 HP Blowers, Diffusers, and Mixers	\$6,200,000
Alternative 3	New 200 HP Vertical Surface Aerators and Post Aeration Tank	\$4,620,000
Alternative 4A	New 200 HP Blowers, Diffusers, Mixers, and Post Aeration Tank	\$7,380,000
Alternative 4B	New 300 HP Blowers, Diffusers, Mixers, and Post Aeration Tank	\$7,360,000

Alternatives Evaluation – LCCA

Alternative	Description	OPCC	20-Year Present Worth of Electrical Cost	20-Year Present Worth of Chemical Cost	20-Year Present Worth of Maintenance Cost	Total 20-Year Present Worth
Alternative 1	200 HP Aerators	\$2,940,000	\$3,230,000	\$340,000	\$180,000	
Alternative 2A	200 HP Blowers, Diffusers, and Mixers	\$6,220,000	\$3,150,000	\$120,000	\$520,000	\$9,890,000
Alternative 2B	300 HP Blowers, Diffusers, and Mixers	\$6,200,000	\$3,080,000	\$120,000	\$480,000	\$9,760,000
Alternative 3	200 HP Aerators with Post Aeration	\$4,620,000	\$2,950,000	\$50,000	\$180,000	\$7,750,000
Alternative 4A	200 HP Blowers, Diffusers, Mixers, with Post Aeration	\$7,380,000	\$2,600,000	\$50,000	\$470,000	\$10,450,000
Alternative 4B	300 HP Blowers, Diffusers, Mixers, with Post Aeration	\$7,360,000	\$2,550,000	\$50,000	\$430,000	\$10,340,000

Recommendations

Conclusions

- Lowest construction and life cycle cost Aerators with VFDs
- Many diffused air/mixer systems have been retrofitted in ODs
 - Few with SND/nutrient removal
- Replacement of surface aerators will have less impact on the plant operations, shorter construction period

Recommended Improvements

- New 200 HP surface aerators with VFDs for turndown capability
- Future post aeration tanks for optimization of biological nutrient removal (when more stringent limits are in effect)

Lindsey Hassenauer, PE

(513) 469-5110 Ihassenauer@hazenandsawyer.com

