

engineers | scientists | innovators

Ammonia Water Quality Criteria Past, Present and Future

2017 OWEA Technical Conference June 26, 2017

Adrienne Nemura Elizabeth Toot-Levy Rishab Mahajan

Ammonia 101

Natural Sources

- One of several forms of nitrogen present in aquatic environments
- Excreted by animals as a waste
- Produced during decomposition of vegetation
- Atmospheric gas exchange
- Forest fires
- Nitrogen fixation

Anthropogenic

- Industrial uses
 - Metal treating
 - Alkali production
 - Pulp and paper
 - Food and beverage
- Commercial fertilizers
- Wastewater treatment plant effluent
- Atmospheric gas exchange

Ammonia Toxicity

- Direct toxic effects on aquatic life
 - Other forms of nitrogen have indirect effects on aquatic life
- Ammonia toxicity leads to lower reproduction and growth in sensitive organisms
- Ammonia toxicity is pH and temperature dependent
 - As temperature increases, organisms are more sensitive to ammonia
 - Ammonia toxicity also increases as pH increases

Mussel Distribution

The Mussel Problem

- Loss of habitat/mussel beds
- Reduction in reproduction
- Causes

- Dams and stream channelization
- Siltation
- Invasive species
- Lack of host species

 Sensitivity to ammonia, copper, chlorine, zinc

Federal Regulatory Timeline

- 1976 Original freshwater ammonia criteria
- 1985 First update to original criteria
 - 4-day averaging period
 - Unionized ammonia
- 1999 Significant updates
 - pH and temperature dependent
 - 30-day averaging period
 - Total ammonia nitrogen
- 2004 Revisions to criteria begin
- 2009 Revised draft criteria
- 2013 Final draft ammonia criteria

Debate over the numbers...

1999 Update CCC Magnitude			2009 Draft Update CCC Magnitude			2013 Final CCC Magnitude	
Species	pH 8.0, T=25°C (mg TAN/L)	pH 7.0, T=20°C (mg TAN/L)	Species	pH 8.0, T=25°C (mg TAN/L)	pH 7.0, T=20°C (mg TAN/L)	Species	pH 7.0, T=20°C (mg TAN/L)
Fathead minnow, Pimephales promelas	3.09	7.503	Long fingernailclam, Musculium transversum	<2.260	7.552	Long fingernailclam, Musculium transversum	7.547
Lepomis sp. (Centrarchidae), includes: Bluegill sunfish, L. macrochirus, and Green sunfish, L. cyanellus	2.85	6.92	Lepomis sp. (Centrarchidae), includes: Bluegill sunfish, L. macrochirus, and Green sunfish, L. cyanellus	2.852	6.924	Lepomis sp. (Centrarchidae), includes: Bluegill sunfish, L. macrochirus, and Green sunfish, L. cyanellus	6.92
Long fingernailclam, Musculium transversum	<2.26	7.547	Rainbow mussel, Villosa iris	<0.9805	3.286	Rainbow mussel, Villosa iris	3.501
Amphipod, <i>Hyalella azteca</i>	<1.45	4.865	<i>Lampsilis</i> sp. (Unionidae), includes: Wavy-rayed lamp mussel, <i>L. fasciola</i> and Fatmucket, <i>L. siliquoidea</i>	<0.3443	1.154	<i>Lampsilis</i> sp. (Unionidae), includes: Wavy-rayed lamp mussel, <i>L. fasciola</i> and Fatmucket, <i>L. siliquoidea</i>	2.216
CCC	1.2	4.5	CCC	0.26	0.91	CCC	1.9

Increasing Scientific Knowledge

- 2003 toxicity data indicate larval and juvenile freshwater mussels are more sensitive to ammonia
- 2005 protocol for testing larval and juvenile freshwater mussels was approved
- 2011 studies demonstrated that certain snails are also sensitive to ammonia
- 2013 ammonia criteria includes freshwater snail and mussel data
- Still...
 - Concerns about laboratory studies versus reality
 - Need for more holistic approaches to restoring reproducing mussels beds

2013 Final Ammonia Aquatic Life Criteria

- One set of freshwater criteria
- Developed to protect the aquatic community including sensitive mussel species
 - Site-specific recalculations are available when mussels are determined to be absent, when appropriate
- Removed invasive species from the dataset
- Updated literature review for toxicity data
- Renormalized data to pH 7 and 20°C

2013 Federal Aquatic Life Criteria

- Acute = 17 mg N/L at pH 7 and 20° C
 - Duration = 1 hour average
 - Frequency = not to be exceeded more than once in 3 years
- Chronic = 1.9 mg N/L at pH 7 and 20°C
 - Duration = 30-day average
 - Frequency = not be exceeded more than once in 3 years
 - Not to exceed the criterion continuous concentration (CCC) as a 4-day average within 30-days, more than once in 3-years

Effluent Challenges

- Competing priorities
- Even well-designed and well operated WWTPs plants will occasionally exceed criteria
 - Need new permitting approaches
- Biological nutrient removal (BNR) is one of the most cost-effective technologies to remove nitrogen and phosphorus
 - But not to achieve very low levels of ammonia
- Spending money to remove ammonia may not restore mussel beds
 - Need site-specific restoration strategies beyond traditional Clean Water Act compliance

REGULATORY FLEXIBILITIES

REGULATORY FLEXIBILITIES

- Resident Species Recalculation
- Variances
- Revisions to Designated Uses
- Compliance Schedules
- Stochastic Forecasting of pH and Temperature
- Mixing Zones
- Integrated Planning

Mixing Zones

- Estimate initial dilution in receiving waters
- Flow of river or stream, or a portion thereof
- Allowed to mix with effluent before water quality criteria must be met
- Criteria met at edge of mixing zone

Mixing Zones

EPA's Water Quality Standards Handbook "A mixing zone is a limited area or volume of water where initial dilution of a discharge takes place and where certain numeric water quality criteria may be exceeded."

- ✓ Small portion of waterbody
- Protects uses of the waterbody
- Re-evaluated with NPDES permit renewals
- Not for bio-accumulative chemicals
- Not a license to pollute

7 Manual ndf

Typical Mixing Zone Models

- Visual Plumes
 - Limited application to "shallow water" conditions with no local recirculation
- Cornell Mixing Zone Expert System (CORMIX)
 - Mix of theory and best professional judgement
 - Most widely used for mixing zone analysis
- Computation Fluid Dynamics
 - More complex, typically more accurate
 - Addresses non-standard discharges
 - Accommodates geographic features (wind dams, sharp bends in river)

Example Mixing Zone Study

- The city operates a WWTP discharging to a large river
- 3-cell aerated lagoon system
- Design flow of 1.5
 MGD
- IEPA requested mixing zone modeling as part of permit renewal process

Modeling Approach

- CORMIX model developed to simulate mixing
- Assess whether discharge has reasonable potential to exceed ammonia criteria
- Available discharge and receiving water used to parameterize the CORMIX model
- Worst case effluent concentration 25 mg/L (based on effluent monitoring data)

Criteria and Mixing Zones

- Ammonia criteria calculated based on historical 75th percentile pH and temperature
 - Acute criterion 3.9 mg/L (summer)
 - Chronic criterion 0.7 mg/L (summer)
- Chronic mixing zone length assumed to be distance at which simulated plume started interacting with river bottom
- Acute mixing zone length 10% of chronic mixing zone length (USEPA Technical Support Document for Toxics Control – 1991)

Model Results – Dilution Factors

Model Results - Concentrations

34.3

Findings and Future Implications

- Mixing zone modeling demonstrated
 - Rapid and complete mixing of effluent discharge downstream
 - Discharge does not have reasonable potential to exceed water quality criteria for ammonia
 - Effluent permit limit for ammonia not required
- If criteria are revised, model can be used to evaluate alternative options for compliance
 - Different assumptions about upstream and effluent concentrations
 - Diffusers
 - Plant operational changes

Integrated Planning

- New policy in 2012
- Response to cities' concerns about CWA compliance
 - Costs exceed localized affordability
 - No measurable improvements in water quality
- Allows communities to prioritize CWA projects
 - Possible incorporation of watershed projects that provide higher value for aquatic life
- Strengthens ability to make case on high cost – low benefit projects that should be delayed

Adrienne Nemura (734) 476-0357 anemura@Geosytec.com Elizabeth Toot-Levy (440) 227-9181 etootlevy@Geosytec.com

Rishab Mahajan (630) 203-3361 <u>rmahajan@Geosytec.com</u>

Geosyntec Consultants

engineers | scientists | innovators