Restoring Ecosystem Services in Degraded Urban Soils Using Biosolids and Soil Amendment Blends

Nick Basta Professor of Soil and Environmental Chemistry School of Environment and Natural Resources The Ohio State University Columbus, Ohio

> 2015 Biosolids Specialty Workshop Columbus, OH December 3, 2015

School of Environment and Natural Resources Ohio State University

Environmental Science / Ecosystem Science Terrestrial Wildlife and Ecology Soil Science Wetland Science / Ecosystems Forest Ecosystems Stream, Lake Ecosystems and Fisheries Environmental Law, Policy and Social Science

School of Environment and Natural Resources Soil Environmental Chemistry Program

Research program

- Soil/Environmental contaminant chemistry; ecotoxicology emphasis on environmental media (air, soil, dust, water, food) exposure and human and ecological risk assessment
- Development and evaluation of soil remediation technologies
- Beneficial use of organic residuals including biosolids

Personnel :

full time staff

Research Scientist; Research Assoc. /Laboratory Manager;

- **5 Research Assistants**
- 3 graduate students and 5 part-time laboratory assistants

Revitalization of Degraded Urban Soils

Many urban soils and brownfields have lost their soil quality. These soils have lost their essential "ecosystem services, to support vegetation, support the food chain (earthworms for birds, etc), and recycle waste materials (dead vegetation, excess nutrients).

Degraded soils in Calumet, IL

High Quality Soil is the Foundation of a Healthy Ecosystem

Soil Quality: The capacity of a soil to function to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation.

High Demand for High Quality Soil

Topsoil Excavation from Farmland "borrowed soil" destruction of vital Natural Resource Lower quality subsoil being used as value of farmland topsoil hits record highs

Solution: Manufactured Soil Blends Compost, Animal Manure, Biosolids, and/or other bioproducts

MWRD Aged EQ Biosolids

Biosolids compost

Using Biosolids / Byproducts to Revitalize Degraded Land / Brownfields in Chicago

MWRDGC scientists are international leaders in restoration using their biosolids products

Unique Aged EQ Biosolids

Evaluating Biosolids Soil Blends and Compost for Soil Restoration and Revitalization in the Calumet Region

Ohio State University

Dr. Nicholas Basta Dr. Richard Dick Dr. Roman Lanno Dawn Busalacchi Jennifer Tvergyak

Metropolitan Water Reclamation <u>District</u> Dr. Lakhwinder Hundal Dr. Kuldip Kumar Dr. Albert Cox Dr. Thomas Granato

Ohio State Research Team

Nicholas Basta Professor of Soil/Environmental Chemistry, SENR Dawn Busalacchi, Graduate Research Assistant (GRA)

Richard Dick Professor of Soil Microbial Ecology and Eminent Scholar, SENR Jennifer Tvergyak, GRA

Roman Lanno Professor of Water and Soil Ecotoxicology Evolution, Ecology and Organismal Biology

Ecological Restoration of the Calumet Region of NE Illinois & NW Indiana

- Developed by many city, state, and federal agencies and area stakeholders
- Established SITE
 SPECIFIC Background,
 Threshold (NOAEL) &
 Benchmark (LOAEL)
 levels of contaminants in
 soil, sediment and surface
 waters of the region
- Our data was compared against THESE LEVELS
- recommended resurfacing with 2 inches of compost

Calumet Area Ecotoxicology Protocol

Prepared by Calumet Ecotoxicology Roundtable Technical Team

June 2007

Project Objectives

USFWS had concerns about the use of biosolids as a restoration material in the Calumet area. Vegetative compost (2 inches applied to surface) was proposed.

Therefore, this study compares biosolids / blends to vegetative compost performance in restoring ecological function to degraded sites, while minimizing environmental impact

Research Field Location in Calumet, Illinois

Experimental Design - Randomized Runoff Plots

Soil Treatment/Blend Materials

MWRD Biosolids

Water Treatment Residual (WTR) - added to bind excess soluble P

Biochar – added to absorb potential organic contaminants

Aaron Mali and Oulu Coquie rototill in the Soil Treatments

Plot installation and rainfall runoff collection

- Runoff collected for every rainfall event, for 3 yrs and analyzed for TSS, pH, EC, N, P and dissolved metals
- Microconstituents (PPCPs) analyzed by AXYS Analytical Labs

Plots were seeded with 33 native grass, legume and forb species from Cardno JFNew

Vegetation sampled yrs 2 & 3

and plant tissue was analyzed

- Soils sampled annually and analyzed for multiple constituents
- Laboratory earthworm bioassay conducted to measure mortality and reproductive endpoints
 - > Results....

Select soil quality measures

Total Organic Carbon (TOC), measured as average of 4 replicates for each plot treatment, compared for each sampling year

Biosolids increased soil organic carbon, total N, plant available N (PAN) more than compost treatment

			Plot soil treatment					
	Year	СТ	VC	BS1	BS2	СТ		
					mø kø ⁻¹			
	2009	13.4h*	12.8ab	12.3ab	12.2a	11.9a		
As	2010	17.5b	13.2a	13.7a	13.1a	14.1a		
110	2011	11.4a	12.1a	12.7ab	13.5h	14.0b		
	2011	11.44	12.14	12.740	10.00	14.00		
	2009	204a	1839	234ah	332h	221a		
Ba	2010	203h	1369	209hc	251c	227hc		
Du	2010	1289	1309	189c	210c	182h		
	2011	120a	150a	10,0	2100	1020		
	2000	1 200	1.11b	1 1 <i>4</i> b	0.000	1.00ob		
Ro	2005	NA+	NA	1.140 NA	NA	NA		
De	2010	0.370	0.120	0.235	0.206	0.2860		
	2011	0.570	0.1 <i>2</i> a	0.200	0.200	0.2000		
	2009	1 369	1 339	1 519	2.47h	1.659		
Cd	2002	1.05ab	0.789	1 3hc	1.86d	1.6cd		
Cu	2010	0.989	0.889	1.50C	1.00u	1 10ah		
	2011	0.904	0.004	1.2700	1.450	1.1740		
	2009	3.26b	2 439	2 520	2.40 .	2 439		
Co	2009	3.200 14.9b	2.43a	2.32a 11.2o	2.40a 10.0o	2.43a 10.0o		
CU	2010	14.70 DDI 8	11.2a DDI	11.2a DDI	10.0a DDI	10.0a DDI		
	2011	PDL8	BDL	BDL	BDL	DDL		
	2000	47.20	44.40	52.10	70.26	52.10		
C -	2009	47.2a	44.4a	52.1a	70.50	54.1a		
Cr	2010	51.5a	39.5aD	55.9C	67.30 50.84	50.5DC		
	2011	31.4a	28.4aD	39.3C	50.80	36.4DC		
	2000	52.1.	40.4	102.	2564	122.		
C.	2009	52.1a	49.4a	105a 142b	2500	122a 1946 -		
Cu	2010	03.8a	52.8a	1430	209C	184DC		
	2011	38.3a	39.5a	10900	124c	89.30		
	2000	NIA	NT A	NTA	NTA	NT A		
	2009	INA 170	NA	NA 700	NA 49.6	NA		
Mn	2010	478a	468a	508a	486a	466a		
	2011	387a	416a	458ab	526bc	540c		
	2000	- 0	= 0.0	0.7	10.11	0.50		
	2009	7.61a	5.96a	8.5a	12.1b	8.58a		
Мо	2010	6.84b	4.92a	7.396	8.98c	7.530		
	2011	4./2ab	4.21a	5.400	7.03C	5.120		
	2000	46.01	24.0-	20.0.1	41.0.1	26.6		
	2009	46.0D	34.8a	38.8aD	41.0ab	30.0a		
INI	2010	41.40	31./a	35.2a	35.4a	32.2a		
	2011	26.7c	2 3.8 a	27.5c	28.7c	24.96		
	2000	00.1.1		02.0.1	00.01	07 7 1		
DI	2009	89.1ab	75.5a	83.2ab	99.8b	85.5ab		
Pb	2010	96.2c	68a	86.1bc	94.9c	86.8bc		
	2011	50.3a	52.4a	70.76	70 . 7b	62.6ab		
	2000	2.02-	2.02.	4.57.	1.01.	F F1.		
C1	2009	3.93a	3.92a	4.5/a	4.61a	5.51a		
Sb	2010	NA	NA	INA	NA	NA		
	2011	BDL	BDL	BDL	BDL	BDL		
	2000	0.02	1461	1.04.1	2.02	2.24		
Se	2009	0.83a	1.46ab	1.84ab	3.82c	2.34b		
	2010	NA	NA	NA	NA	NA		
	2011	NA	NA	NA	NA	NA		
	2009	49.3b	51.6b	52.8b	44.9a	46.8ab		
v	2010	NA	NA	NA	NA	NA		
	2011	40.6b	34.1a	36.2ab	37.4ab	37.5ab		
	2009	164a	159a	280a	609b	317a		
Zn	2010	200a	155a	393b	556c	490bc		
	2011	110a	121a	277bc	311c	241b		

parameter measured with same letter are not different Not analyzed

§ Below detect limit

Heavy Metal(loid)s in Soil

BS treatments increased soil Cu and Zn

these levels are below any concern (including USEPA Ecological Soil Screening Levels)

addition of Cu and Zn and other micronutrients are beneficial because these are essential plant nutrients

animals manure or biosolids provides micronutrients –compost doesn't

Biosolids Increased Soil Phosphorus

Phosphorus Saturation Index (PSI = (P $_{ox}$)/ (AI $_{ox}$ + Fe $_{ox}$); values over 1 have been correlated with potential transport of labile (soluble) P

BS2 a concern; BS1 less concern

Soil Enzymes as an indicator of soil nutrient cycling

Biological function	Soil Enzyme	Ecosystem service	CS E	Respons VC	<u>se</u> BS
Chitin degradation	N-Acetyl- β- glucosaminidase	C & N Nutrient cycling; N fixation	-	+	++
Glucose availability	β-glucosidase	Microbial energy source; indirect heavy metal indicator	-	+	++
Inorganic N metabolism	Amidase & urease	Supplies N to microbes	-	-	-
P availability	Acid & alkaline phosphatase	P release for plant nutrition	-	+	++
Sulfate metabolism	Arlysulfatase	Indirect indicator of fungi; potential degradation of microconstituents	-	-	+
Broad based nutrient	Fluorescein diacetate (FDA)	Overall indicator of healthy soil biological activity	-	-	+

Select soil enzyme findings

- Biosolids and compost had a positive effect on soil enzymatic activities and microbial function
- Biosolids treatments tended to have higher amounts of fungal biomass compared to control, as well as lower stress biomarkers

Vegetative Performance and Quality

- Biosolids produced highest plant tissue N, thus improved protein content (nutrient) levels
- Biosolids DID NOT elevate trace metals in plants therefore no concern for ecosystem food chain transfer

Both biosolids and VC improved plant diversity

Earthworm 56 Day reproductive bioassay

Neither biosolids or compost increased earthworm mortality
 Both biosolids and compost treatments increased number of juveniles and earthworm reproductive success

The 1st flush of runoff water (1st rainfall event) was tested for 14 dissolved metals:

• As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se & Zn

Findings:

 All metals below Calumet Ecotoxicology Protocols (LOAEL) except Cu for the 2-inch Biosolids . No concern with BS1

Concentration of soluble total N in filtered runoff water sampled after 1st flush, and seasonally thereafter

Greater loss of soluble N associated with biosolids declined markedly to near background levels within 1 year

Concentration of soluble P in filtered runoff water sampled after 1st flush, and seasonally thereafter

- Biosolids increased runoff P compared to compost
- Application of additional WTR in 2nd year was starting to have an impact on P levels

Microconstitutents Pharmaceuticals and Personal Care Products

- 119 PPCP were tested by Axys Analytical Labs
- 20 compounds were measured above detection limits, concentrations ranged from approx 1 to 1760 ng L⁻¹ (Ibuprofen)
- 4 compounds detected in runoff from all treatments
- Concentrations were not above NOAEL (daphnia) and were below probable no-effect levels in literature (PNEC)

Top 5 compounds, which were 10 times greater than detection limit								
Compound	Control	Compost	B2	СТ	NOAEL			
ng L ⁻¹								
Carbamazepine	nd	nd	66.0 - 206	nd	25,000			
DEET	57.9 - 420	57.9 – 86.5	43.0 - 154	58.2 - 176	_			
Gemfibrozil	3.41 – 15.0	7.05 – 84.0	35.8 - 119	90.3 - 324	100,000			
Ibuprofen	nd - 202	89.7 - 568	527 - 1760	854 - 1490	5000			
Valsartan	nd – 17.3	nd – 78.0	58.4 - 200	102 - 233	_			

Conclusions

- Biosolids increased soil organic carbon and many soil quality measures more than compost
- Vegetative performance and community measures responded favorably to both compost and biosolids applications - biosolids response was more pronounced
- Microbial response to compost and biosolids applications were similar. Biosolids had greater nutrient cycling (enzymes) and fungal population than compost

Conclusions

- Soil invertebrates (earthworms) reproductive measures were increased by compost and biosolids
- The biosolids applied at the 2 in rate exhibited potential for P runoff. However 1 inch biosolids rate had much less concern. The WTR combined with biosolids showed some effect in reducing P runoff
- PPCP levels in runoff were not detected or very low. They were below LOAELs and PNECs in the literature

Recommendations

- Biosolids is recommended as a beneficial soil treatment at the 1 inch application rate.
- Use of best management practices to control erosion and runoff after establishment is essential. WTR should be used to reduce P in runoff.
- Vegetative compost balances the N:P ratio of biosolids, and biosolids contributes sustained release of plant nutrients, a combination treatment of both may be an optimal material, and merits further consideration

Acknowledgements

Metropolitan Water Reclamation District of Greater Chicago or Funding this project and tirelessly helping with sample, data collection and research management

School of Environment and Natural Resources Ohio State University

New Ecological Restoration Degree Program B.S. Environmental Science /ER M.S. and Ph.D. Environment Natural Resources ER New faculty on board and hiring more

Other Good News on Campus

"There's nothing that cleanses your soul like getting the hell kicked out of you" -- Coach Woody Hayes

Thank you for your attention More information?

Nick Basta Soil and Water Environmental Laboratory basta.4@osu.edu

